Transcriptome/Proteome Analysis of Corynebacterium glutamicum

Our understanding of Corynebacterium glutamicum has been revolutionized since its genome sequence, whole-genome DNA microarrays for transcriptome analysis, and proteomics techniques have become available. This chapter describes how DNA microarray-based transcriptome analyses as well as cytosolic and membrane proteomics have expedited the knowledge about the physiology and metabolic regulation of C. glutamicum with respect to fundamental and applied research. Recent examples of employing transcriptome analysis to study stimulons, transcriptional regulators, in particular of carbon metabolism and the stress response, to characterize in vivo-evolved strains, for pathway identification, genome instabilities, and strain development for amino acid production are given along with an outlook into future development of transcriptomics due to technical developments. The status quo of C. glutamicum proteomics by classical 2D gel electrophoresis and more recent techniques also allowing the study of membrane proteins are described. Emphasis is given to the posttranslational modification of C. glutamicum proteins by phosphorylation, glycosylation, and N-terminal processing. Selected examples of studying protein–DNA and protein–protein interactions are also discussed.

[1]  M. Pátek,et al.  Integrative and autonomously replicating vectors for analysis of promoters in Corynebacterium glutamicum , 1998 .

[2]  M. Inui,et al.  Scanning the Corynebacterium glutamicum R genome for high-efficiency secretion signal sequences. , 2009, Microbiology.

[3]  C. Dietrich,et al.  Regulation of ldh expression during biotin-limited growth of Corynebacterium glutamicum. , 2009, Microbiology.

[4]  H. Sahm,et al.  The Phosphate Starvation Stimulon of Corynebacterium glutamicum Determined by DNA Microarray Analyses , 2003, Journal of bacteriology.

[5]  Akihiko Kondo,et al.  Direct production of cadaverine from soluble starch using Corynebacterium glutamicum coexpressing α-amylase and lysine decarboxylase , 2009, Applied Microbiology and Biotechnology.

[6]  M. Inui,et al.  Involvement of the LuxR-Type Transcriptional Regulator RamA in Regulation of Expression of the gapA Gene, Encoding Glyceraldehyde-3-Phosphate Dehydrogenase of Corynebacterium glutamicum , 2008, Journal of bacteriology.

[7]  J. Kalinowski,et al.  RamA and RamB are global transcriptional regulators in Corynebacterium glutamicum and control genes for enzymes of the central metabolism. , 2011, Journal of biotechnology.

[8]  Angelika Görg,et al.  A proteome analysis of the cadmium and mercury response in Corynebacterium glutamicum , 2008, Proteomics.

[9]  Huanming Yang,et al.  Codon Usage Patterns in Corynebacterium glutamicum: Mutational Bias, Natural Selection and Amino Acid Conservation , 2010, Comparative and functional genomics.

[10]  M. Pátek,et al.  Metabolic engineering of the L-valine biosynthesis pathway in Corynebacterium glutamicum using promoter activity modulation. , 2009, Journal of biotechnology.

[11]  A. Goesmann,et al.  Ultrafast pyrosequencing of Corynebacterium kroppenstedtii DSM44385 revealed insights into the physiology of a lipophilic corynebacterium that lacks mycolic acids. , 2008, Journal of biotechnology.

[12]  C. Hoischen,et al.  Uptake of glutamate in Corynebacterium glutamicum. 1. Kinetic properties and regulation by internal pH and potassium. , 1990, European journal of biochemistry.

[13]  A. Khodursky,et al.  Nitrogen regulatory protein C-controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[14]  M. Inui,et al.  Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. , 2007, Microbiology.

[15]  T. Rognes,et al.  Custom Design and Analysis of High-Density Oligonucleotide Bacterial Tiling Microarrays , 2009, PLoS ONE.

[16]  Siqi Liu,et al.  Comparative proteomes of Corynebacterium glutamicum grown on aromatic compounds revealed novel proteins involved in aromatic degradation and a clear link between aromatic catabolism and gluconeogenesis via fructose‐1,6‐bisphosphatase , 2007, Proteomics.

[17]  J. Kalinowski,et al.  The glycosylated cell surface protein Rpf2, containing a resuscitation-promoting factor motif, is involved in intercellular communication of Corynebacterium glutamicum , 2004, Archives of Microbiology.

[18]  H. Sahm,et al.  Fructose-1,6-bisphosphatase from Corynebacterium glutamicum: expression and deletion of the fbp gene and biochemical characterization of the enzyme , 2003, Archives of Microbiology.

[19]  M. Inui,et al.  Molecular mechanism of SugR-mediated sugar-dependent expression of the ldhA gene encoding l-lactate dehydrogenase in Corynebacterium glutamicum , 2009, Applied Microbiology and Biotechnology.

[20]  Frank Fischer,et al.  Toward the Complete Membrane Proteome , 2006, Molecular & Cellular Proteomics.

[21]  Jung-Kee Lee,et al.  Functional characterization of the glxR deletion mutant of Corynebacterium glutamicum ATCC 13032: involvement of GlxR in acetate metabolism and carbon catabolite repression. , 2010, FEMS microbiology letters.

[22]  B. Eikmanns,et al.  Complex expression control of the Corynebacterium glutamicum aconitase gene: identification of RamA as a third transcriptional regulator besides AcnR and RipA. , 2009, Journal of biotechnology.

[23]  M. Inui,et al.  Isolation, evaluation and use of two strong, carbon source‐inducible promoters from Corynebacterium glutamicum , 2010, Letters in applied microbiology.

[24]  M. Inui,et al.  Identification of a Gene Encoding a Transporter Essential for Utilization of C4 Dicarboxylates in Corynebacterium glutamicum , 2008, Applied and Environmental Microbiology.

[25]  M. Daffé,et al.  Characterization of the in vivo acceptors of the mycoloyl residues transferred by the corynebacterial PS1 and the related mycobacterial antigens 85 , 2000, Molecular microbiology.

[26]  D. Wolters,et al.  Corynebacterium glutamicum exhibits a membrane-related response to a small ferrocene-conjugated antimicrobial peptide , 2010, JBIC Journal of Biological Inorganic Chemistry.

[27]  Benjamin Fränzel,et al.  Adaptation of Corynebacterium glutamicum to salt‐stress conditions , 2010, Proteomics.

[28]  V. Wendisch Genome-wide expression analysis in Corynebacterium glutamicum using DNA microarrays. , 2003, Journal of biotechnology.

[29]  J. Yates,et al.  Large-scale analysis of the yeast proteome by multidimensional protein identification technology , 2001, Nature Biotechnology.

[30]  George M. Church,et al.  Extensive phosphorylation with overlapping specificity by Mycobacterium tuberculosis serine/threonine protein kinases , 2010, Proceedings of the National Academy of Sciences.

[31]  Volker F Wendisch,et al.  Acetate metabolism and its regulation in Corynebacterium glutamicum. , 2003, Journal of biotechnology.

[32]  G. Besra,et al.  Identification of an α(1→6) mannopyranosyltransferase (MptA), involved in Corynebacterium glutamicum lipomanann biosynthesis, and identification of its orthologue in Mycobacterium tuberculosis , 2007, Molecular microbiology.

[33]  Michael Bott,et al.  Corynebacterial Protein Kinase G Controls 2-Oxoglutarate Dehydrogenase Activity via the Phosphorylation Status of the OdhI Protein* , 2006, Journal of Biological Chemistry.

[34]  F. Repoila,et al.  Small regulatory non‐coding RNAs in bacteria: physiology and mechanistic aspects , 2009, Biology of the cell.

[35]  B. Eikmanns,et al.  l-Valine Production during Growth of Pyruvate Dehydrogenase Complex- Deficient Corynebacterium glutamicum in the Presence of Ethanol or by Inactivation of the Transcriptional Regulator SugR , 2008, Applied and Environmental Microbiology.

[36]  A. Görg,et al.  The current state of two‐dimensional electrophoresis with immobilized pH gradients , 2000, Electrophoresis.

[37]  F. Fischer,et al.  Mapping the membrane proteome of Corynebacterium glutamicum , 2005, Proteomics.

[38]  M. Inui,et al.  Regulation of Expression of Genes Involved in Quinate and Shikimate Utilization in Corynebacterium glutamicum , 2009, Applied and Environmental Microbiology.

[39]  B. Riederer Non-covalent and covalent protein labeling in two-dimensional gel electrophoresis. , 2008, Journal of Proteomics.

[40]  B. Eikmanns,et al.  RamB, a Novel Transcriptional Regulator of Genes Involved in Acetate Metabolism of Corynebacterium glutamicum , 2004, Journal of bacteriology.

[41]  B. Eikmanns,et al.  RamA, the Transcriptional Regulator of Acetate Metabolism in Corynebacterium glutamicum, Is Subject to Negative Autoregulation , 2006, Journal of Molecular Microbiology and Biotechnology.

[42]  W. Wiechert,et al.  Emerging Corynebacterium glutamicum systems biology. , 2006, Journal of biotechnology.

[43]  J. Kalinowski,et al.  Characterization of the LacI-type transcriptional repressor RbsR controlling ribose transport in Corynebacterium glutamicum ATCC 13032. , 2009, Microbiology.

[44]  J. Kalinowski,et al.  The dual transcriptional regulator CysR in Corynebacterium glutamicum ATCC 13032 controls a subset of genes of the McbR regulon in response to the availability of sulphide acceptor molecules , 2008, BMC Genomics.

[45]  V. Wendisch,et al.  Characterization of citrate utilization in Corynebacterium glutamicum by transcriptome and proteome analysis. , 2007, FEMS microbiology letters.

[46]  A. Yokota,et al.  A comparative proteomic approach to understand the adaptations of an H+‐ATPase‐defective mutant of Corynebacterium glutamicum ATCC14067 to energy deficiencies , 2007, Proteomics.

[47]  V. Wendisch Amino acid biosynthesis : pathways, regulation and metabolic engineering , 2007 .

[48]  M. Inui,et al.  ArnR, a Novel Transcriptional Regulator, Represses Expression of the narKGHJI Operon in Corynebacterium glutamicum , 2008, Journal of bacteriology.

[49]  R. Benz,et al.  O-Mycoloylated Proteins from Corynebacterium , 2010, The Journal of Biological Chemistry.

[50]  M. Bott,et al.  Evidence for activator and repressor functions of the response regulator MtrA from Corynebacterium glutamicum. , 2006, FEMS microbiology letters.

[51]  H. Sahm,et al.  Roles of pyruvate kinase and malic enzyme in Corynebacterium glutamicum for growth on carbon sources requiring gluconeogenesis , 2004, Archives of Microbiology.

[52]  A. Yokota,et al.  Enhanced Valine Production in Corynebacterium glutamicum with Defective H+-ATPase and C-Terminal Truncated Acetohydroxyacid Synthase , 2008, Bioscience, biotechnology, and biochemistry.

[53]  Bastian Blombach,et al.  l-Valine Production with Pyruvate Dehydrogenase Complex-Deficient Corynebacterium glutamicum , 2007, Applied and Environmental Microbiology.

[54]  R. Aebersold,et al.  Applying mass spectrometry-based proteomics to genetics, genomics and network biology , 2009, Nature Reviews Genetics.

[55]  M. Pátek,et al.  Chromosomally encoded small antisense RNA in Corynebacterium glutamicum. , 2008, FEMS microbiology letters.

[56]  A. Tauch,et al.  The Zur regulon of Corynebacterium glutamicum ATCC 13032 , 2010, BMC Genomics.

[57]  R. Krause,et al.  Efficient Algorithms for the Computational Design of Optimal Tiling Arrays , 2008, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[58]  M. Inui,et al.  Analyses of the acetate-producing pathways in Corynebacterium glutamicum under oxygen-deprived conditions , 2007, Applied Microbiology and Biotechnology.

[59]  J. Vogel,et al.  Noncoding RNA control of the making and breaking of sugars. , 2008, Genes & development.

[60]  H. Sahm,et al.  A family of Corynebacterium glutamicum/Escherichia coli shuttle vectors for cloning, controlled gene expression, and promoter probing. , 1991, Gene.

[61]  Joachim Klose,et al.  Two‐dimensional electrophoresis of proteins: An updated protocol and implications for a functional analysis of the genome , 1995, Electrophoresis.

[62]  Julia Frunzke,et al.  RamB, the Transcriptional Regulator of Acetate Metabolism in Corynebacterium glutamicum, Is Subject to Regulation by RamA and RamB , 2006, Journal of bacteriology.

[63]  V. Wendisch,et al.  Putrescine production by engineered Corynebacterium glutamicum , 2010, Applied Microbiology and Biotechnology.

[64]  H. Sahm,et al.  Global Expression Profiling and Physiological Characterization of Corynebacterium glutamicum Grown in the Presence of l-Valine , 2003, Applied and Environmental Microbiology.

[65]  V. Wendisch,et al.  Characterization of the Dicarboxylate Transporter DctA in Corynebacterium glutamicum , 2009, Journal of bacteriology.

[66]  G. Besra,et al.  Ethambutol, a cell wall inhibitor of Mycobacterium tuberculosis, elicits L-glutamate efflux of Corynebacterium glutamicum. , 2005, Microbiology.

[67]  J. Kalinowski,et al.  The cytosolic, cell surface and extracellular proteomes of the biotechnologically important soil bacterium Corynebacterium efficiens YS‐314 in comparison to those of Corynebacterium glutamicum ATCC 13032 , 2006, Proteomics.

[68]  R. Doolittle,et al.  A simple method for displaying the hydropathic character of a protein. , 1982, Journal of molecular biology.

[69]  D. Wolters,et al.  The two‐phase partitioning system – a powerful technique to purify integral membrane proteins of Corynebacterium glutamicum for quantitative shotgun analysis , 2009, Proteomics.

[70]  Lennart Martens,et al.  The minimum information about a proteomics experiment (MIAPE) , 2007, Nature Biotechnology.

[71]  V. Wendisch,et al.  Regulation of l-Lactate Utilization by the FadR-Type Regulator LldR of Corynebacterium glutamicum , 2007, Journal of bacteriology.

[72]  H. Sahm,et al.  Linking Central Metabolism with Increased Pathway Flux: l-Valine Accumulation by Corynebacterium glutamicum , 2002, Applied and Environmental Microbiology.

[73]  M. Bott,et al.  clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor σH , 2004, Molecular microbiology.

[74]  M. Rögner,et al.  Evaluation of two proteomics technologies used to screen the membrane proteomes of wild-type Corynebacterium glutamicum and an L-lysine-producing strain , 2007, Analytical and bioanalytical chemistry.

[75]  Patrick T. McGrath,et al.  Small non‐coding RNAs in Caulobacter crescentus , 2008, Molecular microbiology.

[76]  H. Sahm,et al.  Regulation of enzymes of lysine biosynthesis in Corynebacterium glutamicum. , 1988, Journal of general microbiology.

[77]  M. Palumbo,et al.  Widespread Antisense Transcription in Escherichia coli , 2010, mBio.

[78]  V. Wendisch,et al.  ScrB (Cg2927) is a sucrose-6-phosphate hydrolase essential for sucrose utilization by Corynebacterium glutamicum. , 2008, FEMS microbiology letters.

[79]  Sophie Lemoine,et al.  An evaluation of custom microarray applications: the oligonucleotide design challenge , 2009, Nucleic acids research.

[80]  A. Goesmann,et al.  The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. , 2003, Journal of biotechnology.

[81]  W. Ansorge Next-generation DNA sequencing techniques. , 2009, New biotechnology.

[82]  V. Wendisch,et al.  Ethanol Catabolism in Corynebacterium glutamicum , 2007, Journal of Molecular Microbiology and Biotechnology.

[83]  C. Lambert,et al.  Uptake of glutamate in Corynebacterium glutamicum. 2. Evidence for a primary active transport system. , 1990, European journal of biochemistry.

[84]  Andreas Burkovski,et al.  Regulation of AmtR‐controlled gene expression in Corynebacterium glutamicum: mechanism and characterization of the AmtR regulon , 2005, Molecular microbiology.

[85]  A. Goesmann,et al.  Complete genome sequence and lifestyle of black-pigmented Corynebacterium aurimucosum ATCC 700975 (formerly C. nigricans CN-1) isolated from a vaginal swab of a woman with spontaneous abortion , 2010, BMC Genomics.

[86]  J. Kalinowski,et al.  The LacI/GalR family transcriptional regulator UriR negatively controls uridine utilization of Corynebacterium glutamicum by binding to catabolite-responsive element (cre)-like sequences. , 2008, Microbiology.

[87]  R. Figge,et al.  Methionine Biosynthesis in Escherichia coli and Corynebacterium glutamicum , 2006 .

[88]  A. Burkovski Ammonium assimilation and nitrogen control in Corynebacterium glutamicum and its relatives: an example for new regulatory mechanisms in actinomycetes. , 2003, FEMS microbiology reviews.

[89]  B. Eikmanns,et al.  Identification and Characterization of a Bacterial Transport System for the Uptake of Pyruvate, Propionate, and Acetate in Corynebacterium glutamicum , 2008, Journal of bacteriology.

[90]  L. Eggeling,et al.  The FHA domain of OdhI interacts with the carboxyterminal 2‐oxoglutarate dehydrogenase domain of OdhA in Corynebacterium glutamicum , 2010, FEBS letters.

[91]  G. Storz,et al.  Regulatory RNAs in Bacteria , 2009, Cell.

[92]  L. M. Mateos,et al.  Characterization and Use of Catabolite-Repressed Promoters from Gluconate Genes in Corynebacterium glutamicum , 2006, Journal of bacteriology.

[93]  B. Eikmanns,et al.  Identification of RamA, a Novel LuxR-Type Transcriptional Regulator of Genes Involved in Acetate Metabolism of Corynebacterium glutamicum , 2006, Journal of bacteriology.

[94]  B. Eikmanns,et al.  Genetic and Functional Analysis of the Soluble Oxaloacetate Decarboxylase from Corynebacterium glutamicum , 2010, Journal of bacteriology.

[95]  Fang Wang,et al.  The human serum proteome: Display of nearly 3700 chromatographically separated protein spots on two‐dimensional electrophoresis gels and identification of 325 distinct proteins , 2003, Proteomics.

[96]  M. Bott,et al.  Towards a phosphoproteome map of Corynebacterium glutamicum , 2003, Proteomics.

[97]  V. Wendisch,et al.  Identification and Characterization of the Dicarboxylate Uptake System DccT in Corynebacterium glutamicum , 2008, Journal of bacteriology.

[98]  J. Kalinowski,et al.  The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate:sugar phosphotransferase system (PTS) in Corynebacterium glutamicum , 2007, BMC Molecular Biology.

[99]  I. Brune,et al.  Triple transcriptional control of the resuscitation promoting factor 2 (rpf2) gene of Corynebacterium glutamicum by the regulators of acetate metabolism RamA and RamB and the cAMP-dependent regulator GlxR. , 2008, FEMS microbiology letters.

[100]  J. Kalinowski,et al.  Quantitative proteomic overview on the Corynebacterium glutamicuml-lysine producing strain DM1730. , 2010, Journal of proteomics.

[101]  B. Eikmanns,et al.  The Alcohol Dehydrogenase Gene adhA in Corynebacterium glutamicum Is Subject to Carbon Catabolite Repression , 2007, Journal of bacteriology.

[102]  A. Ninfa,et al.  Protein phosphorylation and regulation of adaptive responses in bacteria. , 1989, Microbiological reviews.

[103]  Sabine Ehrt,et al.  Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection , 2010, Proceedings of the National Academy of Sciences.

[104]  E. Kimura,et al.  Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens. , 2003, Genome research.

[105]  S. Takeno,et al.  Anaerobic growth and potential for amino acid production by nitrate respiration in Corynebacterium glutamicum , 2007, Applied Microbiology and Biotechnology.

[106]  A. Burkovski,et al.  A proteomic study of Corynebacterium glutamicum AAA+ protease FtsH , 2007, BMC Microbiology.

[107]  M. Inui,et al.  Expression of the gapA gene encoding glyceraldehyde-3-phosphate dehydrogenase of Corynebacterium glutamicum is regulated by the global regulator SugR , 2008, Applied Microbiology and Biotechnology.

[108]  Nick V Grishin,et al.  Lysine Acetylation Is a Highly Abundant and Evolutionarily Conserved Modification in Escherichia Coli*S , 2009, Molecular & Cellular Proteomics.

[109]  H Sahm,et al.  Characterization of the phosphoenolpyruvate carboxykinase gene from Corynebacterium glutamicum and significance of the enzyme for growth and amino acid production. , 2001, Journal of molecular microbiology and biotechnology.

[110]  M. Bott,et al.  The AraC-type Regulator RipA Represses Aconitase and Other Iron Proteins from Corynebacterium under Iron Limitation and Is Itself Repressed by DtxR* , 2005, Journal of Biological Chemistry.

[111]  A. Tauch,et al.  Heat Shock Proteome Analysis of Wild-Type Corynebacterium glutamicum ATCC 13032 and a Spontaneous Mutant Lacking GroEL1, a Dispensable Chaperone , 2005, Journal of bacteriology.

[112]  F. Fischer,et al.  Proteome Science BioMed Central , 2004 .

[113]  J. Kalinowski,et al.  Functional genomics of pH homeostasis in Corynebacterium glutamicum revealed novel links between pH response, oxidative stress, iron homeostasis and methionine synthesis , 2009, BMC Genomics.

[114]  Volker F. Wendisch,et al.  Improving lysine production by Corynebacterium glutamicum through DNA microarray-based identification of novel target genes , 2007, Applied Microbiology and Biotechnology.

[115]  C. Wittmann,et al.  Identification and Elimination of the Competing N-Acetyldiaminopentane Pathway for Improved Production of Diaminopentane by Corynebacterium glutamicum , 2010, Applied and Environmental Microbiology.

[116]  T. Pawson,et al.  Protein phosphorylation in signaling--50 years and counting. , 2005, Trends in biochemical sciences.

[117]  B. Eikmanns,et al.  The transcriptional regulators RamA and RamB are involved in the regulation of glycogen synthesis in Corynebacterium glutamicum. , 2010, Microbiology.

[118]  A. Goesmann,et al.  The lifestyle of Corynebacterium urealyticum derived from its complete genome sequence established by pyrosequencing. , 2008, Journal of biotechnology.

[119]  M. Bott,et al.  Citrate Utilization by Corynebacterium glutamicum Is Controlled by the CitAB Two-Component System through Positive Regulation of the Citrate Transport Genes citH and tctCBA , 2009, Journal of bacteriology.

[120]  M. Inui,et al.  The ldhA Gene, Encoding Fermentative l-Lactate Dehydrogenase of Corynebacterium glutamicum, Is under the Control of Positive Feedback Regulation Mediated by LldR , 2009, Journal of bacteriology.

[121]  B. Eikmanns,et al.  Acetohydroxyacid Synthase, a Novel Target for Improvement of l-Lysine Production by Corynebacterium glutamicum , 2008, Applied and Environmental Microbiology.

[122]  Bastian Blombach,et al.  RamB Is an Activator of the Pyruvate Dehydrogenase Complex Subunit E1p Gene in Corynebacterium glutamicum , 2007, Journal of Molecular Microbiology and Biotechnology.

[123]  V. Wendisch,et al.  Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays , 2004, Applied biochemistry and biotechnology.

[124]  Angelika Görg,et al.  A proteome analysis of Corynebacterium glutamicum after exposure to the herbicide 2,4-dichlorophenoxy acetic acid (2,4-D). , 2007, Chemosphere.

[125]  H. Sahm,et al.  Isolation and prominent characteristics of an L-lysine hyperproducing strain of Corynebacterium glutamicum , 1992, Applied Microbiology and Biotechnology.

[126]  B. Eikmanns,et al.  Dual transcriptional control of the acetaldehyde dehydrogenase gene ald of Corynebacterium glutamicum by RamA and RamB. , 2009, Journal of biotechnology.

[127]  Hyungjoon Kim,et al.  Identification and Characterization of glxR, a Gene Involved in Regulation of Glyoxylate Bypass in Corynebacterium glutamicum , 2004, Journal of bacteriology.

[128]  M. Bott,et al.  A high‐resolution reference map for cytoplasmic and membrane‐associated proteins of Corynebacterium glutamicum , 2001, Electrophoresis.

[129]  M. Inui,et al.  Transcriptional profiling of Corynebacterium glutamicum metabolism during organic acid production under oxygen deprivation conditions. , 2007, Microbiology.

[130]  M. Inui,et al.  A novel redox-sensing transcriptional regulator CyeR controls expression of an Old Yellow Enzyme family protein in Corynebacterium glutamicum. , 2010, Microbiology.

[131]  A. Burkovski,et al.  Mapping and identification of Corynebacterium glutamicum proteins by two‐dimensional gel electrophoresis and microsequencing , 1998, Electrophoresis.

[132]  C. Wittmann,et al.  Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane. , 2010, Metabolic engineering.

[133]  B. Barrell,et al.  The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. , 2003, Nucleic acids research.

[134]  L. Eggeling,et al.  Characterization of a Corynebacterium glutamicum Lactate Utilization Operon Induced during Temperature-Triggered Glutamate Production , 2005, Applied and Environmental Microbiology.

[135]  V. Wendisch Genetic regulation of Corynebacterium glutamicum metabolism , 2006 .

[136]  V. Wendisch,et al.  Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. , 2006, Current opinion in microbiology.

[137]  A. Burkovski,et al.  Detection of fluorescence dye-labeled proteins in 2-D gels using an Arthur 1442 Multiwavelength Fluoroimager. , 2001, BioTechniques.

[138]  C. Wittmann,et al.  In-Depth Profiling of Lysine-Producing Corynebacterium glutamicum by Combined Analysis of the Transcriptome, Metabolome, and Fluxome , 2004, Journal of bacteriology.

[139]  V. Wendisch,et al.  Two-Component Systems of Corynebacterium glutamicum: Deletion Analysis and Involvement of the PhoS-PhoR System in the Phosphate Starvation Response , 2006, Journal of bacteriology.

[140]  Mónica Barriuso-Iglesias,et al.  Response of the cytoplasmic and membrane proteome of Corynebacterium glutamicum ATCC 13032 to pH changes , 2008, BMC Microbiology.

[141]  L. Eggeling,et al.  Citrate synthase in Corynebacterium glutamicum is encoded by two gltA transcripts which are controlled by RamA, RamB, and GlxR. , 2011, Journal of biotechnology.

[142]  J. Baumbach,et al.  The GlxR regulon of the amino acid producer Corynebacterium glutamicum: in silico and in vitro detection of DNA binding sites of a global transcription regulator. , 2008, Journal of biotechnology.

[143]  Younhee Kim,et al.  Expression analysis of the csp-like genes from Corynebacterium glutamicum encoding homologs of the Escherichia coli major cold-shock protein cspA. , 2007, Journal of microbiology and biotechnology.

[144]  I. Tanaka,et al.  Structural and functional characterization of the LldR from Corynebacterium glutamicum: a transcriptional repressor involved in l-lactate and sugar utilization , 2008, Nucleic acids research.

[145]  S. C. Rison,et al.  The Mycobacterium tuberculosis Rv1099c gene encodes a GlpX-like class II fructose 1,6-bisphosphatase. , 2004, Microbiology.

[146]  H. Nothwang,et al.  Aqueous polymer two‐phase systems: Effective tools for plasma membrane proteomics , 2006, Proteomics.

[147]  M. Bott,et al.  Glutamate production by Corynebacterium glutamicum: dependence on the oxoglutarate dehydrogenase inhibitor protein OdhI and protein kinase PknG , 2007, Applied Microbiology and Biotechnology.

[148]  F. Neidhardt,et al.  Diagnosis of cellular states of microbial organisms using proteomics , 1999, Electrophoresis.

[149]  M. Bott,et al.  Co-ordinated regulation of gluconate catabolism and glucose uptake in Corynebacterium glutamicum by two functionally equivalent transcriptional regulators, GntR1 and GntR2 , 2007, Molecular microbiology.

[150]  M. Fussenegger,et al.  Use of antibodies for detection of phosphorylated proteins separated by two‐dimensional gel electrophoresis , 2001, Proteomics.

[151]  M. Inui,et al.  DivS, a novel SOS‐inducible cell‐division suppressor in Corynebacterium glutamicum , 2008, Molecular microbiology.

[152]  W. Lehmann,et al.  Protein and proteome phosphorylation stoichiometry analysis by element mass spectrometry. , 2006, Analytical chemistry.

[153]  K. Brinkrolf,et al.  The transcriptional regulatory repertoire of Corynebacterium glutamicum: reconstruction of the network controlling pathways involved in lysine and glutamate production. , 2010, Journal of biotechnology.

[154]  M. Pátek,et al.  Plasmid Vectors for Testing In Vivo Promoter Activities in Corynebacterium glutamicum and Rhodococcus erythropolis , 2007, Current Microbiology.

[155]  V. Wendisch,et al.  The DeoR-Type Regulator SugR Represses Expression of ptsG in Corynebacterium glutamicum , 2007, Journal of bacteriology.

[156]  Wayne F. Patton,et al.  A thousand points of light: The application of fluorescence detection technologies to two‐dimensional gel electrophoresis and proteomics , 2000, Electrophoresis.

[157]  M. Baumgart,et al.  RosR (Cg1324), a Hydrogen Peroxide-sensitive MarR-type Transcriptional Regulator of Corynebacterium glutamicum* , 2010, The Journal of Biological Chemistry.

[158]  A. Hüser,et al.  Genetic makeup of the Corynebacterium glutamicum LexA regulon deduced from comparative transcriptomics and in vitro DNA band shift assays. , 2009, Microbiology.

[159]  Y. Huang,et al.  PcaO Positively Regulates pcaHG of the β-Ketoadipate Pathway in Corynebacterium glutamicum , 2010, Journal of bacteriology.

[160]  A. Goesmann,et al.  Complete Genome Sequence and Analysis of the Multiresistant Nosocomial Pathogen Corynebacterium jeikeium K411, a Lipid-Requiring Bacterium of the Human Skin Flora , 2005, Journal of bacteriology.

[161]  M. Pátek,et al.  Leucine synthesis in Corynebacterium glutamicum: enzyme activities, structure of leuA, and effect of leuA inactivation on lysine synthesis , 1994, Applied and environmental microbiology.

[162]  L. Eggeling,et al.  Handbook of Corynebacterium glutamicum , 2005 .

[163]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[164]  J. Vogel,et al.  Experimental approaches for the discovery and characterization of regulatory small RNA. , 2009, Current opinion in microbiology.

[165]  B. Eikmanns,et al.  Corynebacterium glutamicum tailored for high-yield L-valine production , 2008, Applied Microbiology and Biotechnology.

[166]  L. M. Mateos,et al.  Phosphorylation of a Novel Cytoskeletal Protein (RsmP) Regulates Rod-shaped Morphology in Corynebacterium glutamicum* , 2010, The Journal of Biological Chemistry.

[167]  M. Ikeda,et al.  Reengineering of a Corynebacterium glutamicuml-Arginine and l-Citrulline Producer , 2009, Applied and Environmental Microbiology.

[168]  P. O’Farrell High resolution two-dimensional electrophoresis of proteins. , 1975, The Journal of biological chemistry.

[169]  V. Wendisch,et al.  The pstSCAB operon for phosphate uptake is regulated by the global regulator GlxR in Corynebacterium glutamicum. , 2011, Journal of biotechnology.

[170]  Kazuho Ikeo,et al.  Evolutionary process of amino acid biosynthesis in Corynebacterium at the whole genome level. , 2004, Molecular biology and evolution.

[171]  D. Creasy,et al.  Unimod: Protein modifications for mass spectrometry , 2004, Proteomics.

[172]  M. Inui,et al.  Regulation of expression of general components of the phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS) by the global regulator SugR in Corynebacterium glutamicum , 2008, Applied Microbiology and Biotechnology.

[173]  H. Mizoguchi,et al.  Characterization of mutations induced by N-methyl-N'-nitro-N-nitrosoguanidine in an industrial Corynebacterium glutamicum strain. , 2008, Mutation research.

[174]  B. Eikmanns,et al.  Studies on substrate utilisation in l-valine-producing Corynebacterium glutamicum strains deficient in pyruvate dehydrogenase complex , 2010, Bioprocess and biosystems engineering.

[175]  L. M. Mateos,et al.  The MurC Ligase Essential for Peptidoglycan Biosynthesis Is Regulated by the Serine/Threonine Protein Kinase PknA in Corynebacterium glutamicum* , 2008, Journal of Biological Chemistry.

[176]  J. Timms,et al.  Difference gel electrophoresis , 2008, Proteomics.

[177]  M. Inui,et al.  Regulation of Quinone Oxidoreductase by the Redox-sensing Transcriptional Regulator QorR in Corynebacterium glutamicum* , 2009, The Journal of Biological Chemistry.

[178]  V. Wendisch,et al.  The Global Repressor SugR Controls Expression of Genes of Glycolysis and of the l-Lactate Dehydrogenase LdhA in Corynebacterium glutamicum , 2008, Journal of bacteriology.

[179]  J. Kalinowski,et al.  Retraction: Microarray studies reveal a ‘differential response’ to moderate or severe heat shock of the HrcA- and HspR-dependent systems in Corynebacterium glutamicum , 2009, Microbiology.

[180]  M. Ikeda,et al.  The Corynebacterium glutamicum genome: features and impacts on biotechnological processes , 2003, Applied Microbiology and Biotechnology.

[181]  G. Seibold,et al.  Carbohydrate metabolism in Corynebacterium glutamicum and applications for the metabolic engineering of l-lysine production strains , 2010, Applied Microbiology and Biotechnology.

[182]  D. Wolters,et al.  Physiological adaptation of Corynebacterium glutamicum to benzoate as alternative carbon source – a membrane proteome‐centric view , 2009, Proteomics.

[183]  R. Geffers,et al.  Role of the Transcriptional Regulator RamB (Rv0465c) in the Control of the Glyoxylate Cycle in Mycobacterium tuberculosis , 2009, Journal of bacteriology.

[184]  J. Kalinowski,et al.  The Corynebacterium glutamicum gene pmt encoding a glycosyltransferase related to eukaryotic protein-O-mannosyltransferases is essential for glycosylation of the resuscitation promoting factor (Rpf2) and other secreted proteins. , 2006, FEMS microbiology letters.

[185]  M. Hatsu,et al.  Metabolic Engineering of Corynebacterium glutamicum for Cadaverine Fermentation , 2007, Bioscience, biotechnology, and biochemistry.

[186]  A. Burkovski,et al.  DNA binding by Corynebacterium glutamicum TetR-type transcription regulator AmtR , 2009, BMC Molecular Biology.

[187]  John R Yates,et al.  Proteomics by mass spectrometry: approaches, advances, and applications. , 2009, Annual review of biomedical engineering.

[188]  Helmut E Meyer,et al.  Ultrasensitive detection of unstained proteins in acrylamide gels by native UV fluorescence. , 2003, Analytical chemistry.

[189]  M. Bott,et al.  Population Heterogeneity in Corynebacterium glutamicum ATCC 13032 Caused by Prophage CGP3 , 2008, Journal of bacteriology.

[190]  R Takors,et al.  Systems biology for industrial strains and fermentation processes--example: amino acids. , 2007, Journal of biotechnology.

[191]  R. Aebersold,et al.  Proteomics: the first decade and beyond , 2003, Nature Genetics.

[192]  John R Yates,et al.  Multidimensional separations for protein/peptide analysis in the post-genomic era. , 2002, BioTechniques.

[193]  V. Wendisch,et al.  Pathway identification combining metabolic flux and functional genomics analyses: acetate and propionate activation by Corynebacterium glutamicum. , 2009, Journal of biotechnology.

[194]  J. Klose Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues , 1975, Humangenetik.

[195]  M. Ünlü,et al.  Difference gel electrophoresis. A single gel method for detecting changes in protein extracts , 1997, Electrophoresis.

[196]  M. Bott,et al.  Genetic and biochemical analysis of the serine/threonine protein kinases PknA, PknB, PknG and PknL of Corynebacterium glutamicum: evidence for non-essentiality and for phosphorylation of OdhI and FtsZ by multiple kinases , 2009, Molecular microbiology.

[197]  T. Rabilloud,et al.  Structure‐efficiency relationships of zwitterionic detergents as protein solubilizers in two‐dimensional electrophoresis , 2003, Proteomics.

[198]  H. Zischka,et al.  The membrane proteome of Halobacterium salinarum , 2005, Proteomics.

[199]  L. Kremer,et al.  From the Characterization of the Four Serine/Threonine Protein Kinases (PknA/B/G/L) of Corynebacterium glutamicum toward the Role of PknA and PknB in Cell Division* , 2008, Journal of Biological Chemistry.

[200]  M. Inui,et al.  Identification of new secreted proteins and secretion of heterologous amylase by C. glutamicum , 2009, Applied Microbiology and Biotechnology.

[201]  J. Kalinowski The Genomes of Amino Acid–Producing Corynebacteria , 2005 .

[202]  M. Inui,et al.  Anaerobic growth of Corynebacterium glutamicum using nitrate as a terminal electron acceptor , 2007, Applied Microbiology and Biotechnology.

[203]  Andrew R Jones,et al.  Semi‐automatic tool to describe, store and compare proteomics experiments based on MIAPE compliant reports , 2010, Proteomics.

[204]  D. Desclaux,et al.  Membrane proteomics: Use of additive main effects with multiplicative interaction model to classify plasma membrane proteins according to their solubility and electrophoretic properties , 2000, Electrophoresis.

[205]  Tabiwang N. Arrey,et al.  Elastase Digests , 2009, Molecular & Cellular Proteomics.

[206]  Kristin Reiche,et al.  The primary transcriptome of the major human pathogen Helicobacter pylori , 2010, Nature.

[207]  E. Kolker,et al.  Transcriptome analysis of Escherichia coli using high-density oligonucleotide probe arrays. , 2002, Nucleic acids research.

[208]  M. Thakur,et al.  GTPase Activity of Mycobacterial FtsZ Is Impaired Due to Its Transphosphorylation by the Eukaryotic-type Ser/Thr Kinase, PknA* , 2006, Journal of Biological Chemistry.

[209]  J. Kalinowski,et al.  Sulfur Metabolism in Corynebacterium glutamicum , 2008 .

[210]  K. Brinkrolf,et al.  Transcriptional regulation of catabolic pathways for aromatic compounds in Corynebacterium glutamicum. , 2006, Genetics and molecular research : GMR.

[211]  A. Burkovski,et al.  Two‐dimensional electrophoretic analysis of Corynebacterium glutamicum membrane fraction and surface proteins , 2000, Electrophoresis.

[212]  B. Eikmanns,et al.  Transcriptional control of the succinate dehydrogenase operon sdhCAB of Corynebacterium glutamicum by the cAMP-dependent regulator GlxR and the LuxR-type regulator RamA. , 2009, Journal of biotechnology.

[213]  H Sahm,et al.  Proteome analysis of Corynebacterium glutamicum , 2001, Electrophoresis.

[214]  M. Mann,et al.  Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast , 2008, Nature.

[215]  H. Mizoguchi,et al.  A leuC mutation leading to increased L-lysine production and rel-independent global expression changes in Corynebacterium glutamicum , 2006, Applied Microbiology and Biotechnology.

[216]  M. Mann,et al.  Trypsin Cleaves Exclusively C-terminal to Arginine and Lysine Residues*S , 2004, Molecular & Cellular Proteomics.

[217]  K. Stühler,et al.  Difference gel electrophoresis , 2009, Electrophoresis.

[218]  J. Ohnishi,et al.  Transcriptome Analysis Reveals Global Expression Changes in an Industrial L-Lysine Producer of Corynebacterium glutamicum , 2006, Bioscience, biotechnology, and biochemistry.

[219]  Stéphane Robin,et al.  Transcriptional landscape estimation from tiling array data using a model of signal shift and drift , 2009, Bioinform..

[220]  A. Goesmann,et al.  From Corynebacterium glutamicum to Mycobacterium tuberculosis—towards transfers of gene regulatory networks and integrated data analyses with MycoRegNet , 2009, Nucleic acids research.