Interval k-Graphs and Orders

An interval k-graph is the intersection graph of a family of intervals of the real line partitioned into k classes with vertices adjacent if and only if their corresponding intervals intersect and belong to different classes. In this paper we study the cocomparability interval k-graphs; that is, the interval k-graphs whose complements have a transitive orientation and are therefore the incomparability graphs of strict partial orders. For brevity we call these orders interval k-orders. We characterize the kind of interval representations a cocomparability interval k-graph must have, and identify the structure that guarantees an order is an interval k-order. The case k = 2 is peculiar: cocomparability interval 2-graphs (equivalently proper- or unit-interval bigraphs, bipartite permutation graphs, and complements of proper circular-arc graphs to name a few) have been characterized in many ways, but we show that analogous characterizations do not hold if k > 2. We characterize the cocomparability interval 3-graphs via one forbidden subgraph and hence interval 3-orders via one forbidden suborder.

[1]  P. Fishburn,et al.  The Mathematics Of Preference Choice And Order Essays In Honor Of Peter C Fishburn , 2009 .

[2]  J. Richard Lundgren,et al.  Bipartite probe interval graphs, circular arc graphs, and interval point bigraphs , 2006, Australas. J Comb..

[3]  L. Lovász A Characterization of Perfect Graphs , 1972 .

[4]  F. McMorris,et al.  Topics in Intersection Graph Theory , 1987 .

[5]  T. Gallai Transitiv orientierbare Graphen , 1967 .

[6]  Jorge Urrutia,et al.  Comparability graphs and intersection graphs , 1983, Discret. Math..

[7]  Douglas B. West,et al.  Interval digraphs: An analogue of interval graphs , 1989, J. Graph Theory.

[8]  Fred R. McMorris,et al.  On Probe Interval Graphs , 1998, Discret. Appl. Math..

[9]  D. R. Fulkerson,et al.  Incidence matrices and interval graphs , 1965 .

[10]  Jeremy P. Spinrad,et al.  Bipartite permutation graphs , 1987, Discret. Appl. Math..

[11]  R. P. Dilworth,et al.  A DECOMPOSITION THEOREM FOR PARTIALLY ORDERED SETS , 1950 .

[12]  Ryan B. Hayward,et al.  Weakly triangulated graphs , 1985, J. Comb. Theory B.

[13]  P. Hell,et al.  Interval bigraphs and circular arc graphs , 2004 .

[14]  David E. Brown,et al.  A Characterization of 2-Tree Proper Interval 3-Graphs , 2014 .

[15]  Ben Dushnik,et al.  Partially Ordered Sets , 1941 .

[16]  T. Hiraguchi On the Dimension of Orders , 1955 .

[17]  Stephan Olariu,et al.  Asteroidal Triple-Free Graphs , 1993, SIAM J. Discret. Math..

[18]  Jeremy P. Spinrad Circular-arc graphs with clique cover number two , 1988, J. Comb. Theory, Ser. B.

[19]  J. R. Lundgren,et al.  Variations on Interval Graphs , 2001 .

[20]  David E. Brown,et al.  Probe Interval Orders , 2009, The Mathematics of Preference, Choice and Order.

[21]  Malay K. Sen,et al.  Indifference Digraphs: A Generalization of Indifference Graphs and Semiorders , 1994, SIAM J. Discret. Math..