A Comparison between Polarimetric Radar and Wind Profiler Observations of Precipitation in Tropical Showers

Abstract This paper describes the results of an experiment that combines the data from a 5-cm-wavelength polarimetric radar and multiple-frequency wind profilers to examine the polarimetric signatures associated with the microphysical structure of several relatively shallow thunderstorms and also to examine quantitative rainfall measurements made with the polarimetric radar. These shallow storms produce considerable amounts of centimeter-sized hail. The presence and size of this hail are deduced from the wind profiler data. The melting hail particles produce a distinctive polarimetric signature with large values of differential reflectivity ZDR and suppressed values of the correlation coefficient between the signals at horizontal and vertical polarization. Comparisons between the mass-weighted mean drop diameter and differential reflectivity have been performed and show reasonable agreement with theoretical expectations, although the observed ZDR are somewhat smaller than expected. This may be associated ...

[1]  Harry T. Ochs,et al.  Natural oscillations of small raindrops , 1989, Nature.

[2]  S. K. Avery,et al.  Retrieval of Raindrop Size Distributions Using Two Doppler Wind Profilers: Model Sensitivity Testing , 1994 .

[3]  V. N. Bringi,et al.  Potential Use of Radar Differential Reflectivity Measurements at Orthogonal Polarizations for Measuring Precipitation , 1976 .

[4]  Doppler radar investigation of Hawaiian rain , 1967 .

[5]  Hisato Iwai,et al.  Computer processing for deriving drop-size distributions and vertical air velocities from VHF Doppler radar spectra , 1990 .

[6]  A. Zahrai,et al.  The 10 cm wavelength polarimetric weather radar at NOAA's National Severe Storms Laboratory , 1994, Proceedings of 1994 IEEE National Radar Conference.

[7]  R. Cifelli,et al.  The Effect of Vertical Air Motions on Rain Rates and Median Volume Diameter Determined from Combined UHF and VHF Wind Profiler Measurements and Comparisons with Rain Gauge Measurements , 1998 .

[8]  Peter T. May,et al.  Sensitivity of 5-cm Wavelength Polarimetric Radar Variables to Raindrop Axial Ratio and Drop Size Distribution , 2001 .

[9]  Koray Aydin,et al.  C-Band Dual-Polarization Radar Observables in Rain , 1992 .

[10]  Kenneth S. Gage,et al.  Drop-Size Distribution Characteristics in Tropical Mesoscale Convective Systems , 2000 .

[11]  N. Balakrishnan,et al.  Estimation of Rain and Hail Rates in Mixed-Phase Precipitation , 1990 .

[12]  Roscoe R. Braham,et al.  What is the Role of Ice in Summer Rain-Showers?. , 1964 .

[13]  Lawrence D. Carey,et al.  The Relationship between Precipitation and Lightning in Tropical Island Convection: A C-Band Polarimetric Radar Study , 2000 .

[14]  A. R. Jameson,et al.  What is a Raindrop Size Distribution , 2001 .

[15]  R. Vincent,et al.  A General Approach to the Retrieval of Raindrop Size Distributions from Wind Profiler Doppler Spectra: Modeling Results , 1993 .

[16]  D. Blanchard,et al.  The behavior of water drops at terminal velocity in air , 1950 .

[17]  R. Cifelli,et al.  Comparison of Precipitation Estimation Using Single- and Dual-Frequency Wind Profilers: Simulations and Experimental Results , 1999 .

[18]  A. R. Jameson The Interpretation and Meteorological Application of Radar Backscatter Amplitude Ratios at Linear Polarizations , 1989 .

[19]  R. C. Srivastava,et al.  Doppler Radar Observations of Drop-Size Distributions in a Thunderstorm , 1971 .

[20]  A. Ryzhkov,et al.  Polarimetry for Weather Surveillance Radars , 1999 .

[21]  A. R. Jameson,et al.  On the Spatial Distribution of Cloud Particles , 2000 .

[22]  Roy Rasmussen,et al.  A Wind Tunnel and Theoretical Study on the Melting Behavior of Atmospheric Ice Particles: III. Experiment and Theory for Spherical Ice Particles of Radius > 500 μm , 1984 .

[23]  T. Bird,et al.  The BMRC/NCAR C-Band Polarimetric (C-POL) Radar System , 1998 .

[24]  S. Avery,et al.  Combined use of 50 MHz and 915 MHz wind profilers in the estimation of raindrop size distributions , 1992 .

[25]  A. R. Jameson An Alternative Approach to Estimating Rainfall Rate by Radar Using Propagation Differential Phase Shift , 1994 .

[26]  A. R. Jameson Polarization Radar Measurements in Rain at 5 and 9 GHz , 1991 .

[27]  A. R. Jameson,et al.  Estimation of Propagation-Differential Phase Shift from Sequential Orthogonal Linear Polarization Radar Measurements , 1985 .

[28]  M. J. Murphy,et al.  Multiple-Parameter Radar Observations of Isolated Florida Thunderstorms during the Onset of Electrification , 1996 .

[29]  Jothiram Vivekanandan,et al.  Multiparameter Radar Modeling and Observations of Melting Ice , 1990 .

[30]  V. Chandrasekar,et al.  An Examination of Propagation Effects in Rainfall on Radar Measurements at Microwave Frequencies , 1990 .

[31]  Sergey Y. Matrosov,et al.  Prospects for Measuring Rainfall Using Propagation Differential Phase in X- and Ka-Radar Bands , 1999 .

[32]  Susumu Kato,et al.  A Direct Method for Deriving Drop-Size Distribution and Vertical Air Velocities from VHF Doppler Radar Spectra , 1986 .

[33]  S. Rutledge,et al.  Polarimetric Radar Measurements of Tropical Rain at a 5-cm Wavelength , 1999 .

[34]  S. Chong,et al.  Water Shells on Ice Pellets and Hailstones , 1974 .

[35]  D. S. Zrnic,et al.  Differential propagation phase shift and rainfall rate estimation , 1986 .

[36]  Warner L. Ecklund,et al.  Comparison of Raindrop Size Distributions Measured by Radar Wind Profiler and by Airplane , 1993 .

[37]  P. E. Johnston,et al.  Combined Wind Profiler/Polarimetric Radar Studies of the Vertical Motion and Microphysical Characteristics of Tropical Sea-Breeze Thunderstorms , 2002 .

[38]  Karen Andsager,et al.  Laboratory Measurements of Axis Ratios for Large Raindrops , 1999 .

[39]  R. C. Srivastava,et al.  Doppler radar characteristics of precipitation at vertical incidence , 1973 .

[40]  Alexander V. Ryzhkov,et al.  Advantages of Rain Measurements Using Specific Differential Phase , 1996 .

[41]  E. Gossard Measuring Drop-Size Distributions in Clouds with a Clear-Air-Sensing Doppler Radar , 1988 .

[42]  H. R. Pruppacher,et al.  A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air , 1970 .

[43]  A. R. Jameson The effect of temperature on attenuation-correction schemes in rain using polarization propagation differential phase shift , 1992 .

[44]  K. Beard,et al.  Laboratory Measurements of Spontaneous Oscillations for Moderate-Size Raindrops , 1993 .