Orientation of swimming cells with annular beam optical tweezers

Abstract Optical tweezers are a versatile tool that can be used to manipulate small particles including both motile and non-motile bacteria and cells. The orientation of a non-spherical particle within a beam depends on the shape of the particle and the shape of the light field. By using multiple beams, sculpted light fields or dynamically changing beams, it is possible to control the orientation of certain particles. In this paper we discuss the orientation of the rod-shaped bacteria Escherichia coli (E. coli) using dynamically shifting annular beam optical tweezers. We begin with examples of different beams used for the orientation of rod-shaped particles. We discuss the differences between orientation of motile and non-motile particles, and explore annular beams and the circumstances when they may be beneficial for manipulation of non-spherical particles or cells. Using simulations we map out the trajectory the E. coli takes. Estimating the trap stiffness along the trajectory gives us an insight into how stable an intermediate rotation is with respect to the desired orientation. Using this method, we predict and experimentally verify the change in the orientation of motile E. coli from vertical to near-horizontal with only one intermediate step. The method is not specific to exploring the orientation of particles and could be easily extended to quantify the stability of an arbitrary particle trajectory.

[1]  Howard C. Berg,et al.  E. coli in Motion , 2003 .

[2]  Configurable microscopic optical potentials for Bose-Einstein condensates using a digital-micromirror device , 2016 .

[3]  Norman R. Heckenberg,et al.  Optical tweezers computational toolbox , 2007 .

[4]  A. Kuhn,et al.  Single-atom trapping and transport in DMD-controlled optical tweezers , 2017, 1708.06672.

[5]  E. Martín-Badosa,et al.  Extending calibration-free force measurements to optically-trapped rod-shaped samples , 2017, Scientific Reports.

[6]  K. Neuman,et al.  Optical trapping. , 2004, The Review of scientific instruments.

[7]  Damon W K Wong,et al.  Redistribution of the zero order by the use of a phase checkerboard pattern in computer generated holograms. , 2008, Applied optics.

[8]  Arthur Ashkin,et al.  Optical Levitation by Radiation Pressure , 1971 .

[9]  Cornelia Denz,et al.  Advanced optical trapping by complex beam shaping , 2013 .

[10]  Halina Rubinsztein-Dunlop,et al.  Optical trapping of otoliths drives vestibular behaviours in larval zebrafish , 2017, Nature Communications.

[11]  Jonathan Leach,et al.  Aberration correction in holographic optical tweezers. , 2006, Optics express.

[12]  Xiaoshuai Liu,et al.  Optical trapping and orientation of Escherichia coli cells using two tapered fiber probes , 2015 .

[13]  A. Ashkin Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. , 1992, Methods in cell biology.

[14]  H. Rubinsztein-Dunlop,et al.  An interpretation and guide to single-pass beam shaping methods using SLMs and DMDs , 2016 .

[15]  M. Woerdemann,et al.  Full 3D translational and rotational optical control of multiple rod‐shaped bacteria , 2010, Journal of biophotonics.

[16]  H. Rubinsztein-Dunlop,et al.  High-speed transverse and axial optical force measurements using amplitude filter masks. , 2019, Optics express.

[17]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[18]  Naoya Matsumoto,et al.  Spherical aberration correction suitable for a wavefront controller. , 2009, Optics express.

[19]  Halina Rubinsztein-Dunlop,et al.  Optical tweezers: Theory and modelling , 2014 .

[20]  Calibration of force detection for arbitrarily shaped particles in optical tweezers , 2018, Scientific Reports.

[21]  Jonathan M. Taylor,et al.  Indirect optical trapping using light driven micro-rotors for reconfigurable hydrodynamic manipulation , 2019, Nature Communications.

[22]  Kuo-Kang Liu,et al.  Optical tweezers for single cells , 2008, Journal of The Royal Society Interface.

[23]  Yong-Le Pan,et al.  Measurement and autocorrelation analysis of two‐dimensional light‐scattering patterns from living cells for label‐free classification , 2011, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[24]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[25]  Simon Hanna,et al.  Computational study of the optical trapping of ellipsoidal particles , 2011 .

[26]  H. Rubinsztein-Dunlop,et al.  Phase-transition-like properties of double-beam optical tweezers. , 2011, Physical review letters.

[27]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[28]  C. Denz,et al.  Optical Force Sensing with Cylindrical Microcontainers , 2018 .

[29]  H. Rubinsztein-Dunlop,et al.  Multipole Expansion of Strongly Focussed Laser Beams , 2003 .

[30]  L. Oliveira,et al.  Optical Trapping and Manipulation of Superparamagnetic Beads Using Annular-Shaped Beams , 2018, Methods and Protocols.

[31]  Halina Rubinsztein-Dunlop,et al.  Equilibrium orientations and positions of non-spherical particles in optical traps. , 2012, Optics express.

[32]  Polly M Fordyce,et al.  Simultaneous, coincident optical trapping and single-molecule fluorescence , 2004, Nature Methods.

[33]  Baoli Yao,et al.  Long-Distance Axial Trapping with Focused Annular Laser Beams , 2013, PloS one.

[34]  David G Grier,et al.  Projecting extended optical traps with shape-phase holography. , 2006, Optics letters.

[35]  Tomáš Čižmár,et al.  Shaping the future of manipulation , 2011 .

[36]  M. Feingold,et al.  Rotation of single bacterial cells relative to the optical axis using optical tweezers. , 2011, Optics letters.

[37]  Miles J. Padgett,et al.  Tweezers with a twist , 2011 .

[38]  David McGloin,et al.  Single aerosol trapping with an annular beam: improved particle localisation. , 2012, Physical chemistry chemical physics : PCCP.

[39]  G. Volpe,et al.  Simulation of a Brownian particle in an optical trap , 2013 .

[40]  A. Gennerich Optical Tweezers , 2017, Methods in Molecular Biology.

[41]  A. Ashkin,et al.  Optical trapping and manipulation of viruses and bacteria. , 1987, Science.