Plasmonic meta-atoms and metasurfaces

Metamaterials enable the tailoring of properties like dielectric permittivity and magnetic permeability. Electromagnetic excitations of metamaterial constituents and their interactions are reviewed, as well as promising future directions. Despite the extraordinary degree of interest in optical metamaterials in recent years, the hoped-for devices and applications have, in large part, yet to emerge. It is becoming clear that the first generation of metamaterial-based devices will most probably arise from their two-dimensional equivalents — metasurfaces. In this Review, we describe recent progress in the area of metasurfaces formed from plasmonic meta-atoms. In particular, we approach the subject from the perspective of the fundamental excitations supported by the meta-atoms and the interactions between them. We also identify some areas ripe for future research and indicate likely avenues for future device development.

[1]  G. Weick,et al.  Dirac-like plasmons in honeycomb lattices of metallic nanoparticles. , 2012, Physical review letters.

[2]  M. Wegener,et al.  Absolute extinction cross section of individual magnetic split-ring resonators , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[3]  Symmetry-selective third-harmonic generation from plasmonic metacrystals. , 2014, Physical review letters.

[4]  D. Pozar,et al.  Design of millimeter wave microstrip reflectarrays , 1997 .

[5]  R. Blanchard,et al.  Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. , 2012, Nano letters.

[6]  Bernhard Lamprecht,et al.  Optical properties of two interacting gold nanoparticles , 2003 .

[7]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[8]  O. Avayu,et al.  Optical metasurfaces for polarization-controlled beam shaping. , 2014, Optics letters.

[9]  S. Bozhevolnyi,et al.  Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. , 2013, Nano letters.

[10]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[11]  Ai Qun Liu,et al.  High-efficiency broadband meta-hologram with polarization-controlled dual images. , 2014, Nano letters.

[12]  Thomas A. Klar,et al.  A Low Threshold Polymer Laser Based on Metallic Nanoparticle Gratings , 2003 .

[13]  J. Bonache,et al.  Babinet principle applied to the design of metasurfaces and metamaterials. , 2004, Physical review letters.

[14]  Harald Giessen,et al.  Tailoring enhanced optical chirality : design principles for chiral plasmonic nanostructures , 2012 .

[15]  S. Asano,et al.  Light scattering by a spheroidal particle. , 1975, Applied optics.

[16]  L. Dal Negro,et al.  Deterministic aperiodic nanostructures for photonics and plasmonics applications , 2012 .

[17]  David R. Smith,et al.  Negative refractive index metamaterials , 2006 .

[18]  Andreas Tünnermann,et al.  Spatial and Spectral Light Shaping with Metamaterials , 2012, Advanced materials.

[19]  Vladimir M. Shalaev,et al.  Metasurface holograms for visible light , 2013, Nature Communications.

[20]  E. Namdas,et al.  How to recognize lasing , 2009 .

[21]  W. Wu,et al.  Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography , 2006 .

[22]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[23]  Markku Kuittinen,et al.  Enhancement of second-harmonic generation from metal nanoparticles by passive elements. , 2013, Physical review letters.

[24]  Lukas Novotny,et al.  Effective wavelength scaling for optical antennas. , 2007, Physical review letters.

[25]  V. Shalaev Optical negative-index metamaterials , 2007 .

[26]  M. Wegener,et al.  Collective effects in second-harmonic generation from split-ring-resonator arrays. , 2012 .

[27]  David R. Smith,et al.  Reconciliation of generalized refraction with diffraction theory. , 2012, Optics letters.

[28]  M. Gather,et al.  Advances in small lasers , 2014, Nature Photonics.

[29]  David R. Smith,et al.  Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles , 2003 .

[30]  K. Yager,et al.  A general strategy for the DNA-mediated self-assembly of functional nanoparticles into heterogeneous systems. , 2013, Nature nanotechnology.

[31]  Arnan Mitchell,et al.  Dielectric resonator nanoantennas at visible frequencies. , 2013, Optics express.

[32]  V. Shalaev,et al.  Fabrication of optical negative-index metamaterials: Recent advances and outlook , 2008 .

[33]  N. Yu,et al.  A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. , 2012, Nano letters.

[34]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[35]  Qiaofeng Tan,et al.  Three-dimensional optical holography using a plasmonic metasurface , 2013, Nature Communications.

[36]  M. Wegener,et al.  Twisted split-ring-resonator photonic metamaterial with huge optical activity. , 2010, Optics letters.

[37]  E Hasman,et al.  Pancharatnam--Berry phase in space-variant polarization-state manipulations with subwavelength gratings. , 2001, Optics letters.

[38]  A. Femius Koenderink,et al.  Lasing at the band edges of plasmonic lattices , 2014, 1409.7293.

[39]  J. Dionne,et al.  Quantum plasmon resonances of individual metallic nanoparticles , 2012, Nature.

[40]  M. Berry The Adiabatic Phase and Pancharatnam's Phase for Polarized Light , 1987 .

[41]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[42]  B. Maes,et al.  Coupling Bright and Dark Plasmonic Lattice Resonances , 2011, 1108.1620.

[43]  L. Solymar,et al.  Magnetoinductive waves in one, two, and three dimensions , 2002 .

[44]  S. L. Prosvirnin,et al.  Coherent meta-materials and the lasing spaser , 2008, 0802.2519.

[45]  William L. Barnes,et al.  Probing the chiral nature of electromagnetic fields surrounding plasmonic nanostructures , 2013 .

[46]  Andrea Alù,et al.  Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions , 2014, Nature.

[47]  Shulin Sun,et al.  Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. , 2012, Nature materials.

[48]  Dylan Lu,et al.  Hyperlenses and metalenses for far-field super-resolution imaging , 2012, Nature Communications.

[49]  A. Hohenau,et al.  Universal dispersion of surface plasmons in flat nanostructures , 2014, Nature Communications.

[50]  Harry A. Atwater,et al.  Low-Loss Plasmonic Metamaterials , 2011, Science.

[51]  F. G. D. Abajo Colloquium: Light scattering by particle and hole arrays , 2007, 0903.1671.

[52]  Harald Giessen,et al.  Third Harmonic Mechanism in Complex Plasmonic Fano Structures , 2014, ACS photonics.

[53]  M. Sinclair,et al.  Realizing optical magnetism from dielectric metamaterials. , 2012, Physical review letters.

[54]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[55]  Peter Ashburn,et al.  Carbon nanotubes in a photonic metamaterial. , 2009, Physical review letters.

[56]  J. Hirsch Spin Hall Effect , 1999, cond-mat/9906160.

[57]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[58]  Shunsuke Murai,et al.  Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources , 2013, Light: Science & Applications.

[59]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[60]  G. von Plessen,et al.  Radiation damping in metal nanoparticle pairs. , 2007, Nano letters.

[61]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[62]  Chunmei Ouyang,et al.  Broadband Metasurfaces with Simultaneous Control of Phase and Amplitude , 2014, Advanced materials.

[63]  M. Wegener,et al.  Past achievements and future challenges in the development of three-dimensional photonic metamaterials , 2011 .

[64]  K. Malloy,et al.  Experimental demonstration of near-infrared negative-index metamaterials. , 2005, Physical review letters.

[65]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[66]  S. Pancharatnam,et al.  Generalized theory of interference, and its applications , 1956 .

[67]  V. Kravets,et al.  Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. , 2008, Physical review letters.

[68]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[69]  R. Magnusson,et al.  Diffraction efficiencies of thin phase gratings with arbitrary grating shape , 1978 .

[70]  Guofan Jin,et al.  Dispersionless phase discontinuities for controlling light propagation. , 2012, Nano letters.

[71]  Y. Wang,et al.  Photonic Spin Hall Effect at Metasurfaces , 2013, Science.

[72]  M. Wegener,et al.  Negative Refractive Index at Optical Wavelengths , 2007, Science.

[73]  Nikolay I. Zheludev,et al.  Giant optical gyrotropy due to electromagnetic coupling , 2007 .

[74]  Harald Giessen,et al.  Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography , 2009, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[75]  Constantine A. Balanis,et al.  Antenna Theory: Analysis and Design , 1982 .

[76]  T. Ebbesen,et al.  Light in tiny holes , 2007, Nature.

[77]  M. Wegener,et al.  Gold Helix Photonic Metamaterial as Broadband Circular Polarizer , 2009, Science.

[78]  S. Bozhevolnyi,et al.  Plasmonic metasurfaces for efficient phase control in reflection. , 2013, Optics express.

[79]  William L. Barnes,et al.  Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays , 2009 .

[80]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[81]  Yuri S. Kivshar,et al.  High‐Efficiency Dielectric Huygens’ Surfaces , 2015 .

[82]  M. Hentschel,et al.  Three-dimensional chiral plasmonic oligomers , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[83]  Stefan Linden,et al.  Retarded long-range interaction in split-ring-resonator square arrays , 2011 .

[84]  E. Schonbrun,et al.  Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays , 2008 .

[85]  Jan Renger,et al.  Distance dependent spectral tuning of two coupled metal nanoparticles. , 2008, Nano letters.

[86]  Erik Jan Geluk,et al.  Surface plasmon lasing observed in metal hole arrays. , 2013, Physical review letters.

[87]  Qiaofeng Tan,et al.  Dual-polarity plasmonic metalens for visible light , 2012, Nature Communications.

[88]  P. Nordlander,et al.  Mechanisms of Fano resonances in coupled plasmonic systems. , 2013, ACS nano.

[89]  Federico Capasso,et al.  Flat Optics: Controlling Wavefronts With Optical Antenna Metasurfaces , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[90]  Claudio Conti,et al.  The mode-locking transition of random lasers , 2011, 1304.3652.

[91]  M. Wegener,et al.  Circular dichroism of planar chiral magnetic metamaterials. , 2007, Optics letters.

[92]  A. Femius Koenderink,et al.  Optical properties of two-dimensional magnetoelectric point scattering lattices , 2013, 1309.3641.

[93]  E. Hendry,et al.  Chiral Electromagnetic Fields Generated by Arrays of Nanoslits , 2012, Nano letters.

[94]  Wei Zhou,et al.  Tunable subradiant lattice plasmons by out-of-plane dipolar interactions. , 2011, Nature nanotechnology.

[95]  F. D. Abajo,et al.  Optical excitations in electron microscopy , 2009, 0903.1669.

[96]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[97]  W. Barnes,et al.  Collective resonances in gold nanoparticle arrays. , 2008, Physical review letters.

[98]  Federico Capasso,et al.  Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy , 2012, Proceedings of the National Academy of Sciences.

[99]  M. Käll,et al.  Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates , 2013, Scientific Reports.

[100]  Shuichi Murakami,et al.  Hall effect of light. , 2004, Physical review letters.

[101]  Yun Lai,et al.  Dirac spectra and edge states in honeycomb plasmonic lattices. , 2008, Physical review letters.

[102]  J. Gómez Rivas,et al.  Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas. , 2009, Physical review letters.

[103]  George C Schatz,et al.  Lasing action in strongly coupled plasmonic nanocavity arrays. , 2013, Nature nanotechnology.

[104]  N I Zheludev,et al.  Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. , 2007, Physical review letters.

[105]  Antti-Pekka Eskelinen,et al.  Plasmonic surface lattice resonances at the strong coupling regime. , 2014, Nano letters.

[106]  G. Armelles,et al.  Magnetoplasmonics: Combining Magnetic and Plasmonic Functionalities , 2013 .

[107]  J. Valentine,et al.  Realization of an all-dielectric zero-index optical metamaterial , 2013, Nature Photonics.

[108]  G. Lozano,et al.  Directional absorption by phased arrays of plasmonic nanoantennae probed with time-reversed Fourier microscopy , 2014 .

[109]  Johannes Courtial,et al.  Light’s Orbital Angular Momentum , 2004 .

[110]  Vladimir I. Fal'ko,et al.  Selective transmission of Dirac electrons and ballistic magnetoresistance of n − p junctions in graphene , 2006 .

[111]  G. Weick,et al.  Tunable plasmon polaritons in arrays of interacting metallic nanoparticles , 2014, 1403.2205.

[112]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[113]  W. Barnes,et al.  Strong coupling between surface plasmon polaritons and emitters: a review , 2014, Reports on progress in physics. Physical Society.

[114]  Qiaofeng Tan,et al.  Holographic display system of a three-dimensional image with distortion-free magnification and zero-order elimination , 2012 .

[115]  S. Pancharatnam Generalized theory of interference, and its applications , 2013 .

[116]  E. Hendry,et al.  Ultrasensitive detection and characterization of biomolecules using superchiral fields. , 2010, Nature nanotechnology.

[117]  Diederik S. Wiersma,et al.  Laser physics: Random lasers explained? , 2009 .

[118]  George C. Schatz,et al.  Nanoparticle optical properties: Far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles , 2008 .

[119]  Carsten Rockstuhl,et al.  Babinet’s principle for optical frequency metamaterials and nanoantennas , 2007 .

[120]  P. J. van Veldhoven,et al.  Surface plasmon dispersion in metal hole array lasers. , 2013, Optics express.

[121]  Wen-feng Sun,et al.  Ultrathin Terahertz Planar Elements , 2012, 1206.7011.

[122]  M. Wegener,et al.  Magnetic Response of Metamaterials at 100 Terahertz , 2004, Science.

[123]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[124]  Benjamin Gallinet,et al.  Refractive index sensing with subradiant modes: a framework to reduce losses in plasmonic nanostructures. , 2013, ACS nano.