Convolution- and Fourier-transform-based reconstructors for pyramid wavefront sensor.

In this paper, we present two novel algorithms for wavefront reconstruction from pyramid-type wavefront sensor data. An overview of the current state-of-the-art in the application of pyramid-type wavefront sensors shows that the novel algorithms can be applied in various scientific fields such as astronomy, ophthalmology, and microscopy. Assuming a computationally very challenging setting corresponding to the extreme adaptive optics (XAO) on the European Extremely Large Telescope, we present the results of the performed end-to-end simulations and compare the achieved AO correction quality (in terms of the long-exposure Strehl ratio) to other methods, such as matrix-vector multiplication and preprocessed cumulative reconstructor with domain decomposition. Also, we provide a comparison in terms of applicability and computational complexity and closed-loop performance of our novel algorithms to other methods existing for this type of sensor.

[1]  Michael Shao,et al.  Extreme adaptive optics for the Thirty Meter Telescope , 2006, SPIE Astronomical Telescopes + Instrumentation.

[2]  Serge Meimon,et al.  Adaptive optics systems for HARMONI: a visible and near-infrared integral field spectrograph for the E-ELT , 2010, Astronomical Telescopes + Instrumentation.

[3]  R. Ragazzoni Pupil plane wavefront sensing with an oscillating prism , 1996 .

[4]  Remko Stuik,et al.  Sensing wavefronts on resolved sources with pyramids on ELTs , 2016, Astronomical Telescopes + Instrumentation.

[5]  Simone Esposito,et al.  Adaptive optics for ophthalmic applications using a pyramid wavefront sensor. , 2006, Optics express.

[6]  E. Vernet,et al.  A pyramid wavefront sensor with no dynamic modulation , 2002 .

[7]  Stefan Hippler,et al.  PYRAMIR: first on-sky results from an infrared pyramid wavefront sensor , 2006, SPIE Astronomical Telescopes + Instrumentation.

[8]  Thierry Fusco,et al.  Experimental study of an optimised Pyramid wave-front sensor for Extremely Large Telescopes , 2016, Astronomical Telescopes + Instrumentation.

[9]  L. Busoni,et al.  The pyramid wavefront sensor for the high order testbench (HOT) , 2008, Astronomical Telescopes + Instrumentation.

[10]  Elizabeth Daly,et al.  Ophthalmic wavefront measurements using a versatile pyramid sensor , 2010 .

[11]  Matthias Rosensteiner,et al.  Cumulative Reconstructor: fast wavefront reconstruction algorithm for Extremely Large Telescopes. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.

[12]  Marcos A. van Dam,et al.  Design of a truth sensor for the GMT laser tomography adaptive optics system , 2012, Other Conferences.

[13]  Kevin Baker,et al.  Two-sided pyramid wavefront sensor in the direct phase mode , 2006, SPIE Astronomical Telescopes + Instrumentation.

[14]  Miska Le Louarn,et al.  Comparison between a model-based and a conventional pyramid sensor reconstructor. , 2007, Applied optics.

[15]  C. Vérinaud,et al.  Adaptive optics for high‐contrast imaging: pyramid sensor versus spatially filtered Shack–Hartmann sensor , 2005 .

[16]  L. Busoni,et al.  Large Binocular Telescope Adaptive Optics System: new achievements and perspectives in adaptive optics , 2011, Optical Engineering + Applications.

[17]  L. Carbonaro,et al.  Wavefront sensor design for the GMT natural guide star AO system , 2012, Other Conferences.

[18]  Ronny Ramlau,et al.  Preprocessed cumulative reconstructor with domain decomposition: a fast wavefront reconstruction method for pyramid wavefront sensor. , 2013, Applied optics.

[19]  Ronny Ramlau,et al.  Fast algorithm for wavefront reconstruction in XAO/SCAO with pyramid wavefront sensor , 2014, Astronomical Telescopes and Instrumentation.

[20]  Glen Herriot,et al.  Testing the pyramid truth wavefront sensor for NFIRAOS in the lab , 2016, Astronomical Telescopes + Instrumentation.

[21]  Matthias Rosensteiner,et al.  Wavefront reconstruction for extremely large telescopes via CuRe with domain decomposition. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[22]  Roberto Ragazzoni,et al.  On-sky test of the pyramid wavefront sensor , 2003, SPIE Astronomical Telescopes + Instrumentation.

[23]  Stefan Hippler,et al.  PYRAMIR: Exploring the On-Sky Performance of the World’s First Near-Infrared Pyramid Wavefront Sensor , 2010 .

[24]  G. Rousset,et al.  On-sky tests of the CuReD and HWR fast wavefront reconstruction algorithms with CANARY , 2015 .

[25]  Pascal Jagourel,et al.  ATLAS: the E-ELT laser tomographic adaptive optics system , 2010, Astronomical Telescopes + Instrumentation.

[26]  T. Fusco,et al.  The adaptive optics modes for HARMONI: from Classical to Laser Assisted Tomographic AO , 2016, Astronomical Telescopes + Instrumentation.

[27]  Andreas Neubauer,et al.  Cumulative wavefront reconstructor for the Shack-Hartmann sensor , 2011 .

[28]  Armando Riccardi,et al.  Laboratory characterization and performance of the high-order adaptive optics system for the Large Binocular Telescope , 2010 .

[29]  Christophe Verinaud,et al.  On the nature of the measurements provided by a pyramid wave-front sensor , 2004 .

[30]  Fernando Vargas-Martin,et al.  Quantitative phase microscopy of transparent samples using a liquid crystal display , 2013, Journal of biomedical optics.

[31]  S. Esposito,et al.  Pyramid sensor for segmented mirror alignment. , 2005, Optics letters.

[32]  Roberto Ragazzoni,et al.  Expected gain in the pyramid wavefront sensor with limited Strehl ratio , 2016 .

[33]  S. Esposito,et al.  Pyramid Wavefront Sensor behavior in partial correction Adaptive Optic systems , 2001 .

[34]  Armando Riccardi,et al.  Closed-loop performance of pyramid wavefront sensor , 2000, Defense, Security, and Sensing.

[35]  Roberto Ragazzoni,et al.  Extended source pyramid wave-front sensor for the human eye. , 2002, Optics express.

[36]  Christopher Dainty,et al.  Linearity of the pyramid wavefront sensor. , 2006, Optics express.

[37]  I. Iglesias Pyramid phase microscopy. , 2011, Optics letters.