Abnormal room temperature ferromagnetism in CuO-ZnO heterostructures: interface related or not?

We report the new functionality of room temperature ferromagnetism in CuO-ZnO heterostructures. Magnetic measurement results indicate the CuO-ZnO heterostructures show enhanced ferromagnetism contrary to the pure CuO (ZnO) and the observed ferromagnetism is proportional to the interface counts for the film-heterostructures, providing proof of interface related ferromagnetism. Our study suggests that magnetically functional interfaces could be an entirely new and novel design of magnetic materials for emergent devices.

[1]  N. Kosugi,et al.  Observation of the origin of d0 magnetism in ZnO nanostructures using X-ray-based microscopic and spectroscopic techniques. , 2014, Nanoscale.

[2]  Jian-Xin Zhu,et al.  Induced Ferromagnetism at BiFeO3/YBa2Cu3O7 Interfaces , 2014, Scientific Reports.

[3]  J. Siqueiros,et al.  Nanocomposite YCrO3/Al2O3: characterization of the core-shell, magnetic properties, and enhancement of dielectric properties. , 2014, Inorganic chemistry.

[4]  M. Farle,et al.  Room-temperature ferromagnetism in antiferromagnetic cobalt oxide nanooctahedra. , 2014, Nano letters.

[5]  B. Rodríguez-González,et al.  Interface Magnetic Coupling in Epitaxial Bilayers of La0.92MnO3/LaCoO3 Prepared by Polymer-Assisted Deposition , 2014 .

[6]  H. Hwang,et al.  Titanium dxy ferromagnetism at the LaAlO3/SrTiO3 interface. , 2013, Nature materials.

[7]  Sean Li,et al.  Emergent ferromagnetism in ZnO/Al2O3 core-shell nanowires: Towards oxide spinterfaces , 2013 .

[8]  M. Randeria,et al.  Ferromagnetic exchange, spin–orbit coupling and spiral magnetism at the LaAlO3/SrTiO3 interface , 2013, Nature Physics.

[9]  T. Schmitt,et al.  Nature of weak magnetism in SrTiO3/LaAlO3 multilayers. , 2012, Physical review letters.

[10]  D. Gao,et al.  Interface mediated ferromagnetism in bulk CuO/Cu2O composites , 2012 .

[11]  J. Íñiguez,et al.  Exchange bias in LaNiO3-LaMnO3 superlattices. , 2012, Nature materials.

[12]  H. Hwang,et al.  BASIC NOTIONS , 2022 .

[13]  E. Tsymbal,et al.  Magnetic and superconducting phases at the LaAlO 3 /SrTiO 3 interface: The role of interfacial Ti 3 d electrons , 2012 .

[14]  Zhonghua Zhu,et al.  Transforming from paramagnetism to room temperature ferromagnetism in CuO by ball milling , 2011 .

[15]  J. Mannhart,et al.  Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces , 2011, 1105.0235.

[16]  X. Zhai,et al.  Interfacial magnetism in CaRuO3/CaMnO3 superlattices grown on (001) SrTiO3 , 2011 .

[17]  M. Bibes,et al.  Ultrathin oxide films and interfaces for electronics and spintronics , 2011 .

[18]  C. Sanchez-hanke,et al.  Room-temperature ferromagnetism of Cu-doped ZnO films probed by soft X-ray magnetic circular dichroism. , 2010, Physical review letters.

[19]  J. Mannhart,et al.  Oxide Interfaces—An Opportunity for Electronics , 2010, Science.

[20]  J. F. Fernández,et al.  Surface magnetism in ZnO/Co3O4 mixtures , 2009, 0912.3458.

[21]  J. Ding,et al.  Comparative Study of Room‐Temperature Ferromagnetism in Cu‐Doped ZnO Nanowires Enhanced by Structural Inhomogeneity , 2008 .

[22]  R. Naaman,et al.  New Magnetic Properties of Silicon/Silicon Oxide Interfaces , 2007 .

[23]  J. L. Costa-Krämer,et al.  Interface double-exchange ferromagnetism in the Mn-Zn-O system: new class of biphase magnetism. , 2005, Physical review letters.