Unifying Approaches and Removing Unrealistic Assumptions in Shape from Shading: Mathematics Can Help
暂无分享,去创建一个
[1] H. Ishii,et al. Uniqueness results for a class of hamilton-jacobi equations with singular coefficients , 1995 .
[2] Michael A. Penna,et al. Local and semi-local shape from shading for a single perspective image of a smooth object , 1989, Comput. Vis. Graph. Image Process..
[3] Kyoung Mu Lee,et al. Shape from Shading with Perspective Projection , 1994 .
[4] Maurizio Falcone,et al. A scheme for the shape-from-shading model with “black shadows” , 2003 .
[5] P. Lions. Generalized Solutions of Hamilton-Jacobi Equations , 1982 .
[6] Yehezkel Yeshurun,et al. A new perspective [on] shape-from-shading , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.
[7] Emmanuel Prados,et al. Une approche du "Shape From Shading" par solutions de viscosité , 2001 .
[8] Henri Maître,et al. On convergence in the methods of Strat and of Smith for Shape from Shading , 1996, International Journal of Computer Vision.
[9] E. Rouy,et al. A viscosity solutions approach to shape-from-shading , 1992 .
[10] M. Bardi,et al. Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .
[11] Mads Nielsen,et al. Computer Vision — ECCV 2002 , 2002, Lecture Notes in Computer Science.
[12] Olivier Faugeras,et al. A mathematical and algorithmic study of the Lambertian SFS problem for orthographic and pinhole cameras , 2003 .
[13] Clésio Luiz Tozzi,et al. Shape from shading with perspective projection and camera calibration , 1996, Comput. Graph..
[14] Ping-Sing Tsai,et al. Shape from Shading: A Survey , 1999, IEEE Trans. Pattern Anal. Mach. Intell..
[15] F. Camilli,et al. Nonconvex degenerate Hamilton–Jacobi equations , 2002 .
[16] Olivier D. Faugeras,et al. Shape from Shading and Viscosity Solutions , 2002, ECCV.
[17] John Oliensis,et al. Uniqueness in shape from shading , 1991, International Journal of Computer Vision.
[18] Olivier D. Faugeras,et al. "Perspective shape from shading" and viscosity solutions , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.
[19] H. Soner. Optimal control with state-space constraint I , 1986 .
[20] Pierpaolo Soravia. Optimal control with discontinuous running cost: Eikonal equation and shape-from-shading , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).
[21] Daniel N. Ostrov,et al. Numerical Shape-From-Shading for Discontinuous Photographic Images , 2001, International Journal of Computer Vision.
[22] Pierre Gurdjos,et al. Towards shape from shading under realistic photographic conditions , 2004, ICPR 2004.
[23] Fabio Camilli,et al. Maximal subsolutions for a class of degenerate Hamilton-Jacobi problems , 1999 .
[24] Berthold K. P. Horn,et al. Shape from shading , 1989 .
[25] P. Lions,et al. Shape-from-shading, viscosity solutions and edges , 1993 .
[26] P. Dupuis,et al. An Optimal Control Formulation and Related Numerical Methods for a Problem in Shape Reconstruction , 1994 .
[27] G. Barles,et al. Convergence of approximation schemes for fully nonlinear second order equations , 1990, 29th IEEE Conference on Decision and Control.