Nonlinear Inelastic Analysis of Steel Beam‐Columns. I: Theory

This paper presents a nonlinear inelastic analysis of the biaxial bending and torsion of thinwalled steel beamcolumns based on the principle of virtual work. The effect of geometric nonlinearity is...

[1]  J. F. Besseling Non-linear theory for elastic beams and rods and its finite element representation , 1982 .

[2]  J. C. Simo,et al.  The role of non-linear theories in transient dynamic analysis of flexible structures , 1987 .

[3]  Richard H. Gallagher,et al.  Finite element analysis of torsional and torsional–flexural stability problems , 1970 .

[4]  Aura Conci,et al.  Natural approach for thin-walled beam-columns with elastic-plasticity , 1990 .

[5]  Anil Chaudhary,et al.  On the displacement formulation of torsion of shafts with rectangular cross‐sections , 1982 .

[6]  John E. Mottershead Geometric stiffness of thin-walled open section beams using a semiloof beam formulation , 1988 .

[7]  J. C. Simo,et al.  A Geometrically-exact rod model incorporating shear and torsion-warping deformation , 1991 .

[8]  George E. Blandford,et al.  Closure of "Thin-Walled Space Frames. I: Large-Deformation Analysis Theory" , 1991 .

[9]  T. R. Kane,et al.  Dynamics of a cantilever beam attached to a moving base , 1987 .

[10]  D. W. Scharpf,et al.  On large displacement-small strain analysis of structures with rotational degrees of freedom , 1978 .

[11]  Yeong-Bin Yang,et al.  Stiffness Matrix for Geometric Nonlinear Analysis , 1986 .

[12]  A. K. Banerjee,et al.  Multi-Flexible Body Dynamics Capturing Motion-Induced Stiffness , 1991 .

[13]  Shunsuke Baba,et al.  Plastic analysis of torsion of a prismatic beam , 1982 .

[14]  David Murray,et al.  THREE-DIMENSIONAL LARGE DEFORMATION ANALYSIS OF THIN WALLED BEAMS , 1976 .

[15]  N. S. Trahair,et al.  Inelastic uniform torsion of steel members , 1992 .

[16]  K. Bathe,et al.  Large displacement analysis of three‐dimensional beam structures , 1979 .

[17]  George C. Lee,et al.  A finite element model for thin-walled members , 1983 .

[18]  J. Meek,et al.  Geometric and Material Nonlinear Analysis of Thin‐Walled Beam‐Columns , 1990 .

[19]  John F. Abel,et al.  Equilibrium considerations of the updated Lagrangian formulation of beam‐columns with natural concepts , 1987 .

[20]  C. Nyssen AN EFFICIENT AND ACCURATE ITERATIVE METHOD, ALLOWING LARGE INCREMENTAL STEPS, TO SOLVE ELASTO-PLASTIC PROBLEMS , 1981 .

[21]  J. F. Besseling Derivatives of deformation parameters for bar elements and their use in buckling and postbuckling analysis , 1977 .

[22]  N. S. Trahair,et al.  Out‐of‐Plane Strengths of Steel Beams , 1992 .

[23]  J. Argyris An excursion into large rotations , 1982 .

[24]  David Bushnell,et al.  A STRATEGY FOR THE SOLUTION OF PROBLEMS INVOLVING LARGE DEFLECTIONS, PLASTICITY AND CREEP , 1977 .

[25]  V. Vlasov Thin-walled elastic beams , 1961 .

[26]  O. C. Zienkiewicz,et al.  Elasto‐plastic stress analysis. A generalization for various contitutive relations including strain softening , 1972 .

[27]  Klaus-Jürgen Bathe,et al.  ON ELASTIC-PLASTIC ANALYSIS OF I-BEAMS IN BENDING AND TORSION , 1983 .

[28]  P. Friedmann,et al.  The Nonlinear Behavior of Elastic Slender Straight Beams Undergoing Small Strains and Moderate Rotations , 1979 .

[29]  J. C. Simo,et al.  A three-dimensional finite-strain rod model. Part II: Computational aspects , 1986 .

[30]  Walter Wunderlich,et al.  Nonlinear analysis and elastic–plastic load‐carrying behaviour of thin‐walled spatial beam structures with warping constraints , 1986 .

[31]  C. Rankin,et al.  Finite rotation analysis and consistent linearization using projectors , 1991 .

[32]  J. G. Teng,et al.  Elastic-plastic large deflection analysis of axisymmetric shells , 1989 .

[33]  Janusz Badur,et al.  Finite rotations in the description of continuum deformation , 1983 .

[34]  Y. Pi,et al.  Nonlinear Inelastic Analysis of Steel Beam‐Columns. II: Applications , 1994 .

[35]  S. Timoshenko Theory of Elastic Stability , 1936 .

[36]  Fe Frans Veldpaus,et al.  The non-linear flexural-torsional behaviour of straight slender elastic beams with arbitrary cross sections , 1987 .

[37]  Wai‐Fah Chen,et al.  Inelastic Post‐Buckling Behavior of Tubular Members , 1985 .

[38]  G.A.O. Davies,et al.  A 3-D, co-rotational, curved and twisted beam element , 1990 .

[39]  Percy Williams Bridgman,et al.  Studies in large plastic flow and fracture , 1964 .

[40]  George E. Blandford,et al.  AC0 finite element formulation for thin-walled beams , 1989 .

[41]  M. Géradin,et al.  A beam finite element non‐linear theory with finite rotations , 1988 .

[42]  R. F. Kulak,et al.  Accurate Numerical Solutions for Elastic-Plastic Models , 1979 .

[43]  M. Crisfield A FAST INCREMENTAL/ITERATIVE SOLUTION PROCEDURE THAT HANDLES "SNAP-THROUGH" , 1981 .

[44]  Nicholas S. Trahair,et al.  Inelastic nonuniform torsion of steel I-beams , 1991 .

[45]  E. Reissner,et al.  A variational analysis of small finite deformations of pretwisted elastic beams , 1985 .

[46]  M. Crisfield A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements , 1990 .

[47]  J. C. Simo,et al.  A return mapping algorithm for plane stress elastoplasticity , 1986 .

[48]  J. C. Simo,et al.  Consistent tangent operators for rate-independent elastoplasticity☆ , 1985 .