Mechanochemical synthesized amino-functionalized ultramicroporous ZIF based mixed-matrix membranes for CO2 separation

[1]  H. Park,et al.  Interface engineering in MOF/crosslinked polyimide mixed matrix membranes for enhanced propylene/propane separation performance and plasticization resistance , 2022, Journal of Membrane Science.

[2]  Xueqin Li,et al.  Constructing Dual-Transport Pathways by Incorporating Beaded Nanofillers in Mixed Matrix Membranes for Efficient CO2 Separation. , 2022, ACS applied materials & interfaces.

[3]  Chongli Zhong,et al.  Size-reduced low-crystallinity ZIF-62 for the preparation of mixed-matrix membranes for CH4/N2 separation , 2022, Journal of Membrane Science.

[4]  Somaye Nilouyal,et al.  Carbonic Anhydrase-Mimicking Supramolecular Nanoassemblies for Developing Carbon Capture Membranes. , 2022, ACS applied materials & interfaces.

[5]  D. Roh,et al.  Hierarchical Amine-Functionalized Zif-8 Mixed-Matrix Membranes with Engineered Interface and Transport Pathway for Efficient Gas Separation , 2022, SSRN Electronic Journal.

[6]  Xiufeng Liu,et al.  Mixed matrix membrane comprising glycine grafted CuBTC for enhanced CO2 separation performances with excellent stability under humid atmosphere , 2022, Separation and Purification Technology.

[7]  Yong Liu,et al.  Upgrading CO2/CH4 separation performances of Pebax-based mixed-matrix membranes incorporated with core/shell-structured ZIF-L(Co)@ZIF-8 composite nanosheets , 2022, Journal of Membrane Science.

[8]  D. Fairen-jimenez,et al.  The uptake of metal–organic frameworks: a journey into the cell , 2022, Chemical Society reviews.

[9]  Xiangcun Li,et al.  Boosting the CO2/N2 selectivity of MMMs by vesicle shaped ZIF-8 with high amino content , 2022, Separation and Purification Technology.

[10]  Xiangping Zhang,et al.  Mixed matrix membranes containing Cu-based metal organic framework and functionalized ionic liquid for efficient NH3 separation , 2022, Journal of Membrane Science.

[11]  Alper Uzun,et al.  A novel IL/MOF/polymer mixed matrix membrane having superior CO2/N2 selectivity , 2022, Journal of Membrane Science.

[12]  Yonghong Wang,et al.  Enhancing Co2 Separation Performance of Mixed Matrix Membranes by Incorporation of L-Cysteine-Functionalized Mos2 , 2022, SSRN Electronic Journal.

[13]  Yuting Bai,et al.  Engineering nanocomposite metal-phenolic network membranes with hollow MOFs via in-situ etching for High-efficiency organic solvent nanofiltration , 2022, Chemical Engineering Journal.

[14]  Xueqin Li,et al.  Ultrathin Ni-Co nanosheets with disparate-CO2-affinity nanodomains in membranes to improve gas separation , 2022, Separation and Purification Technology.

[15]  Xiangcun Li,et al.  3D hollow CoNi-LDH nanocages based MMMs with low resistance and CO2-philic transport channel to boost CO2 capture , 2022, Journal of Membrane Science.

[16]  Lauren N. McHugh,et al.  Post-Synthetic Modification of a Metal–Organic Framework Glass , 2022, Chemistry of materials : a publication of the American Chemical Society.

[17]  Biao Yuan,et al.  Incorporating amino acids functionalized graphene oxide nanosheets into Pebax membranes for CO2 separation , 2022, Separation and Purification Technology.

[18]  Chang Soo Lee,et al.  In-situ formation of asymmetric thin-film, mixed-matrix membranes with ZIF-8 in dual-functional imidazole-based comb copolymer for high-performance CO2 capture , 2022, Journal of Membrane Science.

[19]  Nanwen Li,et al.  Mixed-matrix membranes consisting of Pebax and novel nitrogen-doped porous carbons for CO2 separation , 2021, Journal of Membrane Science.

[20]  L. Shao,et al.  Recent progress in PIM-1 based membranes for sustainable CO2 separations: polymer structure manipulation and mixed matrix membrane design , 2021, Separation and Purification Technology.

[21]  Chen-Hao Lin,et al.  Amino and triazole-containing metal-organic frameworks for highly efficient CO2 fixation. , 2021, Chemical communications.

[22]  R. Ding,et al.  A Novel Composite Material UiO-66@HNT/Pebax Mixed Matrix Membranes for Enhanced CO2/N2 Separation , 2021, Membranes.

[23]  A. Rahimpour,et al.  Poly (ether-block amide) thin-film membranes containing functionalized MIL-101 MOFs for efficient separation of CO2/CH4 , 2021 .

[24]  Chia‐Her Lin,et al.  Carbon Dioxide Enrichment PEBAX/MOF Composite Membrane for CO2 Separation , 2021, Membranes.

[25]  Jingbin Han,et al.  High-efficiency CO2 separation using hybrid LDH-polymer membranes , 2021, Nature Communications.

[26]  P. Show,et al.  Cellulose acetate-based membranes by interfacial engineering and integration of ZIF-62 glass nanoparticles for CO2 separation. , 2021, Journal of hazardous materials.

[27]  Jun Cheng,et al.  Enhanced CO2 selectivity of mixed matrix membranes with carbonized Zn/Co zeolitic imidazolate frameworks , 2020 .

[28]  Rasoul Sarmadi,et al.  The assessment of honeycomb structure UiO-66 and amino functionalized UiO-66 metal–organic frameworks to modify the morphology and performance of Pebax®1657-based gas separation membranes for CO2 capture applications , 2020, Environmental Science and Pollution Research.

[29]  D. Zhao,et al.  Emerging trends in porous materials for CO2 capture and conversion. , 2020, Chemical Society reviews.

[30]  Douglas M. Franz,et al.  Ultramicropore engineering by dehydration to enable molecular sieving of H2 by calcium trimesate. , 2020, Angewandte Chemie.

[31]  Zhongde Dai,et al.  Morphologically Tunable MOF Nanosheets in Mixed Matrix Membranes for CO2 Separation , 2020 .

[32]  D. Nisbet,et al.  Green Full Conversion of ZnO Nanopowders to Well-Dispersed Zeolitic Imidazolate Framework-8 (ZIF-8) Nanopowders via a Stoichiometric Mechanochemical Reaction for Fast Dye Adsorption , 2020 .

[33]  A. Nizami,et al.  Development of highly permeable and selective mixed matrix membranes based on Pebax®1657 and NOTT-300 for CO2 capture , 2020 .

[34]  P. Sutrisna,et al.  High gas permeability of nanoZIF-8/polymer-based mixed matrix membranes intended for biogas purification , 2020, Journal of Polymer Engineering.

[35]  M. Khajouei,et al.  Influence of functionalized SiO2 nanoparticles on the morphology and CO2/CH4 separation efficiency of Pebax-based mixed-matrix membranes , 2020, Korean Journal of Chemical Engineering.

[36]  Q. Ma,et al.  MOF glass membranes for gas separation. , 2020, Angewandte Chemie.

[37]  Haixiang Sun,et al.  Hydrothermal stable ZIF-67 nanosheets via morphology regulation strategy to construct mixed-matrix membrane for gas separation , 2020 .

[38]  Navid Azizi,et al.  Improving CO2/CH4 separation efficiency of Pebax-1657 membrane by adding Al2O3 nanoparticles in its matrix , 2019 .

[39]  M. Omidkhah,et al.  Promising Performance for Efficient CO2 Separation with the p-tert-Butylcalix[4]arene/Pebax-1657 Mixed Matrix Membrane , 2019, ACS Sustainable Chemistry & Engineering.

[40]  Chong Chen,et al.  Deep eutectic solvents appended to UiO-66 type metal organic frameworks: Preserved open metal sites and extra adsorption sites for CO2 capture , 2019, Applied Surface Science.

[41]  Yatao Zhang,et al.  Covalent organic frameworks (COFs) functionalized mixed matrix membrane for effective CO2/N2 separation , 2019, Journal of Membrane Science.

[42]  W. Xu,et al.  Green and time-saving synthesis of MIL-100(Cr) and its catalytic performance , 2019, Microporous and Mesoporous Materials.

[43]  B. Bruggen,et al.  Construction of graphene oxide based mixed matrix membranes with CO2-philic sieving gas-transport channels through strong π–π interactions , 2018 .

[44]  Christina T. Lollar,et al.  Stable Metal–Organic Frameworks: Design, Synthesis, and Applications , 2018, Advanced materials.

[45]  S. Kaliaguine,et al.  Mixed matrix membranes based on amine and non-amine MIL-53(Al) in Pebax® MH-1657 for CO 2 separation , 2018, Separation and Purification Technology.

[46]  J. Hou,et al.  Gelled Graphene Oxide-Ionic Liquid Composite Membranes with Enriched Ionic Liquid Surfaces for Improved CO2 Separation. , 2018, ACS applied materials & interfaces.

[47]  Xiao Feng,et al.  Stable Aluminum Metal-Organic Frameworks (Al-MOFs) for Balanced CO2 and Water Selectivity. , 2018, ACS applied materials & interfaces.

[48]  Peter Psarras,et al.  CO2 capture from the industry sector , 2017 .

[49]  M. Omidkhah,et al.  Interfacial Design of Ternary Mixed Matrix Membranes Containing Pebax 1657/Silver-Nanopowder/[BMIM][BF4] for Improved CO2 Separation Performance. , 2017, ACS applied materials & interfaces.

[50]  Tony Pham,et al.  Tuning Pore Size in Square-Lattice Coordination Networks for Size-Selective Sieving of CO2. , 2016, Angewandte Chemie.

[51]  M. Eddaoudi,et al.  A Fine-Tuned Fluorinated MOF Addresses the Needs for Trace CO2 Removal and Air Capture Using Physisorption. , 2016, Journal of the American Chemical Society.

[52]  Jian-guo Tang,et al.  Pebax‐1657 nanocomposite membranes incorporated with nanoparticles/colloids/carbon nanotubes for CO2/N2 and CO2/H2 separation , 2013 .

[53]  Li-Chiang Lin,et al.  Understanding CO2 dynamics in metal-organic frameworks with open metal sites. , 2013, Angewandte Chemie.

[54]  V. Chen,et al.  Challenges and opportunities for mixed-matrix membranes for gas separation , 2013 .

[55]  Yue‐Biao Zhang,et al.  Metal azolate frameworks: from crystal engineering to functional materials. , 2012, Chemical reviews.

[56]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.

[57]  Krijn P. de Jong,et al.  Support and Size Effects of Activated Hydrotalcites for Precombustion CO2 Capture , 2010 .

[58]  Michael O’Keeffe,et al.  Exceptional chemical and thermal stability of zeolitic imidazolate frameworks , 2006, Proceedings of the National Academy of Sciences.