DARK MATTER MASS FRACTION IN LENS GALAXIES: NEW ESTIMATES FROM MICROLENSING

We present a joint estimate of the stellar/dark matter mass fraction in lens galaxies and the average size of the accretion disk of lensed quasars based on microlensing measurements of 27 quasar image pairs seen through 19 lens galaxies. The Bayesian estimate for the fraction of the surface mass density in the form of stars is α = 0.21 ± 0.14 near the Einstein radius of the lenses (∼1–2 effective radii). The estimate for the average accretion disk size is light days. The fraction of mass in stars at these radii is significantly larger than previous estimates from microlensing studies assuming quasars were point-like. The corresponding local dark matter fraction of 79% is in good agreement with other estimates based on strong lensing or kinematics. The size of the accretion disk inferred in the present study is slightly larger than previous estimates.

[1]  P. Schechter,et al.  A CALIBRATION OF THE STELLAR MASS FUNDAMENTAL PLANE AT z ∼ 0.5 USING THE MICRO-LENSING-INDUCED FLUX RATIO ANOMALIES OF MACRO-LENSED QUASARS,, , 2014, 1405.0038.

[2]  C. Kochanek,et al.  THE AVERAGE SIZE AND TEMPERATURE PROFILE OF QUASAR ACCRETION DISKS , 2014, 1401.2785.

[3]  C. Rusu,et al.  The stellar and dark matter distributions in elliptical galaxies from the ensemble of strong gravitational lenses , 2013, 1309.5408.

[4]  H. Hoekstra,et al.  Galaxy Masses: A Review , 2013, 1309.3276.

[5]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[6]  C. Kochanek,et al.  THE STRUCTURE OF THE X-RAY AND OPTICAL EMITTING REGIONS OF THE LENSED QUASAR Q 2237+0305 , 2013, 1301.5009.

[7]  C. Kochanek,et al.  Inspiration , 2012 .

[8]  E. Falco,et al.  MEASURING MICROLENSING USING SPECTRA OF MULTIPLY LENSED QUASARS , 2012, 1206.1582.

[9]  G. Meylan,et al.  FURTHER EVIDENCE THAT QUASAR X-RAY EMITTING REGIONS ARE COMPACT: X-RAY AND OPTICAL MICROLENSING IN THE LENSED QUASAR Q J0158–4325 , 2012, 1205.4727.

[10]  C. Kochanek,et al.  A ROBUST DETERMINATION OF THE SIZE OF QUASAR ACCRETION DISKS USING GRAVITATIONAL MICROLENSING , 2012, 1201.3187.

[11]  D. Wilman,et al.  THE RELATION BETWEEN GALAXY MORPHOLOGY AND ENVIRONMENT IN THE LOCAL UNIVERSE: AN RC3-SDSS PICTURE , 2011, 1112.3990.

[12]  G. Meylan,et al.  COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses - X. Modeling based on high-precision astrometry of a sample of 25 lensed quasars: consequences for ellipticity, shear, and astrometric anomalies , 2011, 1112.0005.

[13]  A. Bolton,et al.  EVIDENCE FOR DARK MATTER CONTRACTION AND A SALPETER INITIAL MASS FUNCTION IN A MASSIVE EARLY-TYPE GALAXY , 2011, 1111.4215.

[14]  E. Mediavilla,et al.  NEW DEVELOPMENTS ON INVERSE POLYGON MAPPING TO CALCULATE GRAVITATIONAL LENSING MAGNIFICATION MAPS: OPTIMIZED COMPUTATIONS , 2011 .

[15]  J. Einasto Dark Matter , 2011, Brazilian Journal of Physics.

[16]  Pieter van Dokkum,et al.  COUNTING LOW-MASS STARS IN INTEGRATED LIGHT , 2011, 1109.0007.

[17]  P. Schechter,et al.  X-RAY AND OPTICAL FLUX RATIO ANOMALIES IN QUADRUPLY LENSED QUASARS. II. MAPPING THE DARK MATTER CONTENT IN ELLIPTICAL GALAXIES , 2011, 1108.2725.

[18]  C. Kochanek,et al.  A STUDY OF GRAVITATIONAL LENS CHROMATICITY WITH THE HUBBLE SPACE TELESCOPE , 2011, 1107.5932.

[19]  R. Webster,et al.  A MICROLENSING MEASUREMENT OF DARK MATTER FRACTIONS IN THREE LENSING GALAXIES , 2011, 1103.0353.

[20]  A. Manchado,et al.  THE STRUCTURE OF THE ACCRETION DISK IN THE LENSED QUASAR SBS 0909+532 , 2011 .

[21]  E. Falco,et al.  RESOLVING THE BARYON-FRACTION PROFILE IN LENSING GALAXIES , 2011, 1102.3433.

[22]  C. Conroy,et al.  CONFIRMATION OF ENHANCED DWARF-SENSITIVE ABSORPTION FEATURES IN THE SPECTRA OF MASSIVE ELLIPTICAL GALAXIES: FURTHER EVIDENCE FOR A NON-UNIVERSAL INITIAL MASS FUNCTION , 2011, 1102.3431.

[23]  Pieter G. van Dokkum,et al.  A substantial population of low-mass stars in luminous elliptical galaxies , 2010, Nature.

[24]  P. Jetzer,et al.  CENTRAL DARK MATTER TRENDS IN EARLY-TYPE GALAXIES FROM STRONG LENSING, DYNAMICS, AND STELLAR POPULATIONS , 2010, The Astrophysical Journal.

[25]  A. Bolton,et al.  THE SLOAN LENS ACS SURVEY. X. STELLAR, DYNAMICAL, AND TOTAL MASS CORRELATIONS OF MASSIVE EARLY-TYPE GALAXIES , 2010, 1007.2880.

[26]  P. Schechter,et al.  SIZES AND TEMPERATURE PROFILES OF QUASAR ACCRETION DISKS FROM CHROMATIC MICROLENSING , 2010, 1007.1665.

[27]  D. Sluse,et al.  Strong Lensing by Galaxies , 2010, 1003.5567.

[28]  A. Bolton,et al.  THE INITIAL MASS FUNCTION OF EARLY-TYPE GALAXIES , 2010 .

[29]  A. Bolton,et al.  THE SLOAN LENS ACS SURVEY. IX. COLORS, LENSING, AND STELLAR MASSES OF EARLY-TYPE GALAXIES , 2009, 0911.2471.

[30]  S. Pellegrini,et al.  JD8 - Hot Interstellar Matter in Elliptical Galaxies , 2009, Proceedings of the International Astronomical Union.

[31]  S. Pellegrini Hot gas flows on global and nuclear galactic scales , 2009, Proceedings of the International Astronomical Union.

[32]  E. Falco,et al.  MICROLENSING-BASED ESTIMATE OF THE MASS FRACTION IN COMPACT OBJECTS IN LENS GALAXIES , 2009, 0910.3645.

[33]  Ben Moore,et al.  The structure and evolution of cold dark matter halos , 2009, 0906.4340.

[34]  Astrophysics,et al.  THE SIZES OF THE X-RAY AND OPTICAL EMISSION REGIONS OF RXJ 1131–1231 , 2009, The Astrophysical Journal.

[35]  G. Bernstein,et al.  IMPROVED CONSTRAINTS ON THE GRAVITATIONAL LENS Q0957+561. II. STRONG LENSING , 2009, 0909.1807.

[36]  C. Kochanek,et al.  X-RAY MICROLENSING IN RXJ1131–1231 AND HE1104–1805 , 2008, 0805.4492.

[37]  R. Mandelbaum,et al.  A halo mass—concentration relation from weak lensing , 2008, 0805.2552.

[38]  T. O. S. University,et al.  X-Ray and Optical Microlensing in the Lensed Quasar PG 1115+080 , 2008, 0802.1210.

[39]  C. Kochanek,et al.  The Baryon Fractions and Mass-to-Light Ratios of Early-Type Galaxies , 2007, 0705.3647.

[40]  J. Rhodes,et al.  The Sloan Lens ACS Survey. IV. The Mass Density Profile of Early-Type Galaxies out to 100 Effective Radii , 2007, astro-ph/0701589.

[41]  E. Mediavilla,et al.  A Fast and Very Accurate Approach to the Computation of Microlensing Magnification Patterns Based on Inverse Polygon Mapping , 2006 .

[42]  A. Bolton,et al.  The Sloan Lens ACS Survey. III. The Structure and Formation of Early-Type Galaxies and Their Evolution since z ≈ 1 , 2006, astro-ph/0601628.

[43]  B. McLeod,et al.  The Time Delays of Gravitational Lens HE 0435–1223: An Early-Type Galaxy with a Rising Rotation Curve , 2005, astro-ph/0508070.

[44]  C. Kochanek,et al.  The Evolution and Structure of Early-Type Field Galaxies: A Combined Statistical Analysis of Gravitational Lenses , 2004, astro-ph/0412001.

[45]  P. Schechter,et al.  Size Is Everything: Universal Features of Quasar Microlensing with Extended Sources , 2004, astro-ph/0408195.

[46]  B. McLeod,et al.  The Extinction Law in High-Redshift Galaxies , 2004, astro-ph/0401548.

[47]  C. Kochanek Quantitative Interpretation of Quasar Microlensing Light Curves , 2003, astro-ph/0307422.

[48]  B. Gaudi,et al.  Identifying Lenses with Small-Scale Structure. I. Cusp Lenses , 2002, astro-ph/0210318.

[49]  C. Kochanek,et al.  Direct Detection of Cold Dark Matter Substructure , 2001, astro-ph/0111456.

[50]  J. Lehár,et al.  Hubble Space Telescope Observations of 10 Two-Image Gravitational Lenses , 1999 .

[51]  Tucson,et al.  Dust and Extinction Curves in Galaxies with z > 0: The Interstellar Medium of Gravitational Lens Galaxies , 1999, astro-ph/9901037.

[52]  C. Kochanek,et al.  Constraints on H0 from the Central Velocity Dispersions of Lens Galaxies , 1998, astro-ph/9805080.

[53]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[54]  H. Rix,et al.  Early type galaxies, dark halos, and gravitational lensing statistics , 1993 .

[55]  S. Faber,et al.  Contraction of Dark Matter Galactic Halos Due to Baryonic Infall , 1986 .

[56]  Peter Schneider,et al.  Gravitational Lensing: Strong, Weak and Micro , 2006 .

[57]  Paul L. Schechter,et al.  ACCEPTED IN APJ Preprint typeset using LATEX style emulateapj v. 11/26/03 DIFFERENTIAL MICROLENSING OF THE CONTINUUM AND BROAD EMISSION LINES IN SDSS J0924+0219, THE MOST ANOMALOUS LENSED QUASAR ∗ , 2005 .

[58]  D. Nagai,et al.  Submitted to the Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 11/12/01 RESPONSE OF DARK MATTER HALOS TO CONDENSATION OF BARYONS: COSMOLOGICAL SIMULATIONS AND IMPROVED ADIABATIC CONTRACTION MODEL , 2004 .

[59]  Submitted to the Astrophysical Journal Letters , 1993 .

[60]  J. Einasto On the Construction of a Composite Model for the Galaxy and on the Determination of the System of Galactic Parameters , 1965 .

[61]  SUBMITTED TO APJ Preprint typeset using LATEX style emulateapj v. 10/09/06 THE DARK-MATTER FRACTION IN THE ELLIPTICAL GALAXY LENSING THE QUASAR PG 1115+080 , 2022 .