Estimation of piezoelastic and viscoelastic properties in laminated structures

An inverse method for material parameter estimation of elastic, piezoelectric and viscoelastic laminated plate structures is presented. The method uses a gradient based optimization technique in order to solve the inverse problem, through minimization of an error functional which expresses the difference between experimental free vibration data and corresponding numerical data produced by a finite element model. The complex modulus approach is used to model the viscoelastic material behavior, assuming hysteretic type damping. Applications that illustrate the influence of adhesive material interfaces and viscoelastic parameter identification are presented and a few simulated test cases aid the interpretation of results.

[1]  Pauli Pedersen,et al.  Identification Techniques in Composite Laminates , 1999 .

[2]  A. Araújo,et al.  Characterization of material parameters of composite plate specimens using optimization and experimental vibrational data , 1996 .

[3]  Ieee Standards Board IEEE Standard on Piezoelectricity , 1996 .

[4]  Sang-Bo Han,et al.  Properties of interfacial adhesion for vibration controllability of composite materials as smart structures , 2000 .

[5]  Xu Han,et al.  DETERMINATION OF ELASTIC CONSTANTS OF ANISOTROPIC LAMINATED PLATES USING ELASTIC WAVES AND A PROGRESSIVE NEURAL NETWORK , 2002 .

[6]  José Herskovits,et al.  Parameter estimation in active plate structures , 2006 .

[7]  C. M. Mota Soares,et al.  Parameter estimation in active plate structures using gradient optimisation and neural networks , 2006 .

[8]  José Herskovits,et al.  Combined numerical-experimental model for the identification of mechanical properties of laminated structures , 2000 .

[9]  Ayech Benjeddou,et al.  Advances in Hybrid Active-Passive Vibration and Noise Control Via Piezoelectric and Viscoelastic Constrained Layer Treatments , 2001 .

[10]  C. M. Mota Soares,et al.  Identification of material properties of composite plate specimens , 1993 .

[11]  José Herskovits,et al.  Interior point algorithms for nonlinear constrained least squares problems , 2004 .

[12]  J. Herskovits Feasible Direction Interior-Point Technique for Nonlinear Optimization , 1998 .

[13]  Robert D. Adams,et al.  Modal vibration damping of anisotropic FRP laminates using the Rayleigh-Ritz energy minimization scheme , 2003 .

[14]  Carlos A. Mota Soares,et al.  BUCKLING AND DYNAMIC BEHAVIOUR OF LAMINATED COMPOSITE STRUCTURES USING A DISCRETE HIGHER-ORDER DISPLACEMENT MODEL , 1999 .

[15]  Jean Piranda,et al.  Application of model updating techniques in dynamics for the identification of elastic constants of composite materials , 1999 .

[16]  José Herskovits,et al.  Development of a finite element model for the identification of mechanical and piezoelectric properties through gradient optimisation and experimental vibration data , 2002 .

[17]  Janis Auzins,et al.  Identification of Elastic Properties of Composite Laminates , 2003 .

[18]  Ayech Benjeddou,et al.  Advances in piezoelectric finite element modeling of adaptive structural elements: a survey , 2000 .

[19]  O. Tekinalp,et al.  A layerwise approach to piezo-electric plates accounting for adhesive flexibility and delaminated regions , 2005 .

[20]  Krishnan Balasubramaniam,et al.  Inversion of composite material elastic constants from ultrasonic bulk wave phase velocity data using genetic algorithms , 1998 .

[21]  Robert D. Adams,et al.  Finite-element prediction of modal response of damped layered composite panels , 1995 .

[22]  Harvey Thomas Banks,et al.  Smart material structures: Modeling, estimation, and control , 1996 .

[23]  Xu Han,et al.  An inverse procedure for determination of material constants of composite laminates using elastic waves , 2002 .

[24]  Harvey Thomas Banks,et al.  The estimation of material and patch parameters in a PDE-based circular plate model , 1997 .

[25]  Liyong Tong,et al.  An adhesively laminated plate element for PZT smart plates , 2004 .

[26]  Jack R. Vinson,et al.  Adhesive Layer Effects in Surface-Mounted Piezoelectric Actuators , 2002 .