On the Global Optimization of Sums of Linear Fractional Functions over a Convex Set

The global optimization of the sum of linear fractional functions has attracted the interest of researchers and practitioners for a number of years. Since these types of optimization problems are nonconvex, various specialized algorithms have been proposed for globally solving these problems. However, these algorithms may be difficult to implement and are usually relatively inaccessible. In this article, we show that, by using suitable transformations, a number of potential and known methods for globally solving these problems become available. These methods are often more accessible and use more standard tools than the customized algorithms proposed to date. They include, for example, parametric convex programming and concave minimization methods.

[1]  Abraham Charnes,et al.  Programming with linear fractional functionals , 1962 .

[2]  Glenn W. Graves,et al.  AN ALGORITHM FOR NONCONVEX PROGRAMMING , 1969 .

[3]  Olvi L. Mangasarian,et al.  Nonlinear Programming , 1969 .

[4]  Reiner Horst,et al.  An algorithm for nonconvex programming problems , 1976, Math. Program..

[5]  S. Schaible A note on the sum of a linear and linear‐fractional function , 1977 .

[6]  A. Cambini,et al.  On Maximizing a Sum of Ratios , 1989 .

[7]  Hiroshi Konno,et al.  BOND PORTFOLIO OPTIMIZATION BY BILINEAR FRACTIONAL PROGRAMMING , 1989 .

[8]  Tomomi Matsui,et al.  Parametric simplex algorithms for solving a special class of nonconvex minimization problems , 1991, J. Glob. Optim..

[9]  Susan W. Palocsay,et al.  Optimizing the sum of linear fractional functions , 1992 .

[10]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[11]  Reiner Horst,et al.  Decomposition approach for the global minimization of biconcave functions over polytopes , 1993, Universität Trier, Mathematik/Informatik, Forschungsbericht.

[12]  C. Floudas,et al.  Primal-relaxed dual global optimization approach , 1993 .

[13]  Susan W. Palocsay,et al.  Image space analysis of generalized fractional programs , 1994, J. Glob. Optim..

[14]  Abdellah Salhi,et al.  Global Optimization: Deterministic Approaches (2nd Edition) , 1994 .

[15]  Hiroshi Konno,et al.  Global minimization of a generalized convex multiplicative function , 1994, J. Glob. Optim..

[16]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[17]  Christodoulos A. Floudas,et al.  αBB: A global optimization method for general constrained nonconvex problems , 1995, J. Glob. Optim..

[18]  Harold P. Benson,et al.  Concave Minimization: Theory, Applications and Algorithms , 1995 .

[19]  Ignacio E. Grossmann,et al.  A global optimization algorithm for linear fractional and bilinear programs , 1995, J. Glob. Optim..

[20]  H. P. Benson Deterministic algorithms for constrained concave minimization: A unified critical survey , 1996 .

[21]  H. Konno,et al.  BOND PORTFOLIO OPTIMIZATION PROBLEMS AND THEIR APPLICATIONS TO INDEX TRACKING: A PARTIAL OPTIMIZATION APPROACH , 1996 .

[22]  Hiroshi Konno,et al.  Minimization of the sum of three linear fractional functions , 1999, J. Glob. Optim..

[23]  H. Konno,et al.  Minimizing sums and products of linear fractional functions over a polytope , 1999 .

[24]  Xiaodong Wu,et al.  Optimizing the sum of linear fractional functions and applications , 2000, SODA '00.

[25]  Hiroshi Konno,et al.  A Branch and Bound Algorithm for Solving Low Rank Linear Multiplicative and Fractional Programming Problems , 2000, J. Glob. Optim..

[26]  Takahito Kuno,et al.  A branch-and-bound algorithm for maximizing the sum of several linear ratios , 2002, J. Glob. Optim..

[27]  Harold P. Benson Generating Sum-of-Ratios Test Problems in Global Optimization , 2003 .