Examining charge transport networks in organic bulk heterojunction photovoltaic diodes using 1/f noise spectroscopy

In this article we present 1/f noise spectroscopy measurements relating to charge transport networks in poly(3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) space-charge limited diode (SCLD) and organic photovoltaic (OPV) devices. The P3HT:PCBM active layer was varied to give a range of compositions and heterogeneities. The noise data obtained suggest that un-annealed P3HT:PCBM OPVs are limited by poor hole transport through the mixed phase, and that annealing promotes a more heterogeneous network, resulting in efficient charge transport through an increased population of P3HT crystallites, and better OPV performance. These findings are in agreement with literature studies for similar devices using other measurement techniques, demonstrating that 1/f noise is sensitive to the nature of the charge transport network in bipolar devices. Previous data only confirmed the sensitivity of 1/f noise spectroscopy to the charge transport network in unipolar devices, hence the current data suggest the technique can be used more generally to investigate charge transport networks in bulk heterojunction organic electronic devices such as OPVs and organic light-emitting diodes.

[1]  Gang Li,et al.  “Solvent Annealing” Effect in Polymer Solar Cells Based on Poly(3‐hexylthiophene) and Methanofullerenes , 2007 .

[2]  J. Borchers,et al.  X-ray and neutron reflectivity and electronic properties of PCBM-poly(bromo)styrene blends and bilayers with poly(3-hexylthiophene) , 2012 .

[3]  D. Ginger,et al.  Electrical Scanning Probe Microscopy on Active Organic Electronic Devices , 2009 .

[4]  G. Gustafsson,et al.  Light-emitting diodes with variable colours from polymer blends , 1994, Nature.

[5]  Martin Heeney,et al.  Fullerene crystallisation as a key driver of charge separation in polymer/fullerene bulk heterojunction solar cells , 2012 .

[6]  Gijsbertus de With,et al.  Three-dimensional nanoscale organization of bulk heterojunction polymer solar cells. , 2009, Nano letters.

[7]  Valentin D. Mihailetchi,et al.  Charge Transport and Photocurrent Generation in Poly(3‐hexylthiophene): Methanofullerene Bulk‐Heterojunction Solar Cells , 2006 .

[8]  Richard H. Friend,et al.  Photovoltaic Performance and Morphology of Polyfluorene Blends: A Combined Microscopic and Photovoltaic Investigation , 2001 .

[9]  J. Nelson,et al.  Recombination in Annealed and Nonannealed Polythiophene/Fullerene Solar Cells: Transient Photovoltage Studies versus Numerical Modeling , 2010 .

[10]  D. Ginger,et al.  Characterizing Morphology in Bulk Heterojunction Organic Photovoltaic Systems , 2010 .

[11]  A. F. Tillack,et al.  Surface characterization of polythiophene:fullerene blends on different electrodes using near edge X-ray absorption fine structure. , 2011, ACS applied materials & interfaces.

[12]  C. Brabec,et al.  Origin of the Open Circuit Voltage of Plastic Solar Cells , 2001 .

[13]  C. Brabec,et al.  Influence of blend microstructure on bulk heterojunction organic photovoltaic performance. , 2011, Chemical Society reviews.

[14]  Sarah T. Turner,et al.  Quantitative Analysis of Bulk Heterojunction Films Using Linear Absorption Spectroscopy and Solar Cell Performance , 2011 .

[15]  Harald Ade,et al.  Miscibility, Crystallinity, and Phase Development in P3HT/PCBM Solar Cells: Toward an Enlightened Understanding of Device Morphology and Stability , 2011 .

[16]  Cherno Jaye,et al.  Direct determination of the electronic structure of the poly(3-hexylthiophene):phenyl-[6,6]-C61 butyric acid methyl ester blend , 2010 .

[17]  Jarvist M. Frost,et al.  Binary Organic Photovoltaic Blends: A Simple Rationale for Optimum Compositions , 2008 .

[18]  C. A. Walsh,et al.  Efficient photodiodes from interpenetrating polymer networks , 1995, Nature.

[19]  D. Bradley,et al.  Real‐Time Investigation of Crystallization and Phase‐Segregation Dynamics in P3HT:PCBM Solar Cells During Thermal Annealing , 2011 .

[20]  C. Groves,et al.  Plasmon-loss imaging of polymer-methanofullerene bulk heterojunction solar cells. , 2013 .

[21]  A. Kahn,et al.  Device Characteristics of Bulk-Heterojunction Polymer Solar Cells are Independent of Interfacial Segregation of Active Layers , 2011 .

[22]  Vladimir Dyakonov,et al.  Influence of nanomorphology on the photovoltaic action of polymer–fullerene composites , 2004 .

[23]  Donal D. C. Bradley,et al.  Bimolecular recombination losses in polythiophene: Fullerene solar cells , 2008 .

[24]  F. Hooge 1/f noise sources , 1994 .

[25]  D. Ginger,et al.  Space charge limited current measurements on conjugated polymer films using conductive atomic force microscopy. , 2008, Nano letters.

[26]  Tracey M. Clarke,et al.  Understanding the Influence of Morphology on Poly(3-hexylselenothiophene):PCBM Solar Cells , 2010 .

[27]  J. Müller Fluctuation spectroscopy: a new approach for studying low-dimensional molecular metals. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[28]  N. Greenham,et al.  Monte Carlo modeling of geminate recombination in polymer-polymer photovoltaic devices. , 2008, The Journal of chemical physics.

[29]  George F. A. Dibb,et al.  Limits on the Fill Factor in Organic Photovoltaics: Distinguishing Nongeminate and Geminate Recombination Mechanisms. , 2013, The journal of physical chemistry letters.

[30]  A. K. Raychaudhuri,et al.  Measurement of 1/f noise and its application in materials science , 2002 .

[31]  Antje Vollmer,et al.  Influence of water on the work function of conducting poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) , 2007 .

[32]  D. Ginger,et al.  Heterogeneity in polymer solar cells: local morphology and performance in organic photovoltaics studied with scanning probe microscopy. , 2010, Accounts of chemical research.

[33]  P. Blom,et al.  Unified description of charge-carrier mobilities in disordered semiconducting polymers. , 2005, Physical review letters.

[34]  Sh. Kogan,et al.  Electronic noise and fluctuations in solids , 1996 .

[35]  S. Chua,et al.  Investigation of the Device Degradation Mechanism in Pentacene-Based Thin-Film Transistors Using Low-Frequency-Noise Spectroscopy , 2010, IEEE Transactions on Electron Devices.

[36]  A. Heeger,et al.  X-ray structural studies of poly(3-alkylthiophenes): an example of an inverse comb , 1992 .

[37]  Paul L. Burn,et al.  Doping‐Induced Screening of the Built‐in‐Field in Organic Solar Cells: Effect on Charge Transport and Recombination , 2013 .

[38]  A. Troisi,et al.  Why Holes and Electrons Separate So Well in Polymer/Fullerene Photovoltaic Cells , 2011 .

[39]  Lu Shen,et al.  Impact of self-assembled monolayer on low frequency noise of organic thin film transistors , 2008 .

[40]  John R. Tumbleston,et al.  On the role of intermixed phases in organic photovoltaic blends , 2013 .

[41]  P. M. Horn,et al.  Low-frequency fluctuations in solids: 1/f noise , 1981 .

[42]  N. Greenham,et al.  Bimolecular recombination in polymer electronic devices , 2008 .

[43]  Christopher R. McNeill,et al.  Morphology of all-polymer solar cells , 2012 .

[44]  C. Groves,et al.  Characterisation of charge conduction networks in poly(3-hexylthiophene)/polystyrene blends using noise spectroscopy , 2014 .

[45]  M. Dadmun,et al.  A new model for the morphology of P3HT/PCBM organic photovoltaics from small-angle neutron scattering: rivers and streams. , 2011, ACS nano.

[46]  John R. Tumbleston,et al.  The Importance of Fullerene Percolation in the Mixed Regions of Polymer–Fullerene Bulk Heterojunction Solar Cells , 2013 .

[47]  R. Friend,et al.  Influence of Nanoscale Phase Separation on the Charge Generation Dynamics and Photovoltaic Performance of Conjugated Polymer Blends: Balancing Charge Generation and Separation , 2007 .

[48]  Valentin D. Mihailetchi,et al.  Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells , 2007 .

[49]  Yuan Zhang,et al.  Controllable Molecular Doping and Charge Transport in Solution‐Processed Polymer Semiconducting Layers , 2009 .

[50]  A. Arias,et al.  Materials and applications for large area electronics: solution-based approaches. , 2010, Chemical reviews.

[51]  D. Ginger,et al.  Imaging the evolution of nanoscale photocurrent collection and transport networks during annealing of polythiophene/fullerene solar cells. , 2009, Nano letters.

[52]  M. Lampert Volume-controlled current injection in insulators , 1964 .

[53]  Andrew C. Stuart,et al.  Fluorinated Polymer Yields High Organic Solar Cell Performance for a Wide Range of Morphologies , 2013 .

[54]  David S. Germack,et al.  Interfacial Segregation in Polymer/Fullerene Blend Films for Photovoltaic Devices , 2010 .

[55]  Garry Rumbles,et al.  The influence of solid-state microstructure on the origin and yield of long-lived photogenerated charge in neat semiconducting polymers , 2012 .

[56]  Natalie Stingelin,et al.  Semiconducting:insulating polymer blends for optoelectronic applications—a review of recent advances , 2014 .

[57]  Xiaoniu Yang,et al.  Nanoscale morphology of high-performance polymer solar cells. , 2005, Nano letters.

[58]  A. F. Tillack,et al.  Submicrosecond time resolution atomic force microscopy for probing nanoscale dynamics. , 2012, Nano letters.

[59]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[60]  René A. J. Janssen,et al.  Characterization of polymer solar cells by TOF-SIMS depth profiling , 2003 .

[61]  J. Planès,et al.  Percolation scaling, inhomogeneity, and defects in polyaniline blends: A 1/f noise diagnosis , 2004 .

[62]  A. Heeger,et al.  Electroluminescence from blend films of poly(3-hexylthiophene) and poly(N-vinylcarbazole) , 1995 .

[63]  A. Hexemer,et al.  Polymer Crystallization of Partially Miscible Polythiophene/Fullerene Mixtures Controls Morphology , 2011 .

[64]  J. Campbell,et al.  The impact of thermal annealing temperature on the low-frequency noise characteristics of P3HT:PCBM bulk heterojunction organic solar cells , 2014 .

[65]  Giorgio Ferrari,et al.  Tracking of conduction phenomena and degradation in organic light emitting diodes by current noise measurements , 2001 .

[66]  Jenny Nelson,et al.  Polymer:fullerene bulk heterojunction solar cells , 2011 .

[67]  M. Toney,et al.  Correction: Interdiffusion of PCBM and P3HT Reveals Miscibility in a Photovoltaically Active Blend (Adv. Energy Mater. 2/2011) , 2011 .

[68]  Chris Groves,et al.  Developing understanding of organic photovoltaic devices: kinetic Monte Carlo models of geminate and non-geminate recombination, charge transport and charge extraction , 2013 .

[69]  S. Jenekhe,et al.  Electroluminescence of Multicomponent Conjugated Polymers. 2. Photophysics and Enhancement of Electroluminescence from Blends of Polyquinolines , 2002 .

[70]  N. Armstrong,et al.  Selective Interlayers and Contacts in Organic Photovoltaic Cells. , 2011, The journal of physical chemistry letters.

[71]  M. Toney,et al.  A general relationship between disorder, aggregation and charge transport in conjugated polymers. , 2013, Nature materials.

[72]  K. S. Narayan,et al.  Fluctuations in photocurrent of bulk heterojunction polymer solar cells—A valuable tool to understand microscopic and degradation processes , 2012 .