In situ growth of laser-induced graphene micro-patterns on arbitrary substrates.

In this article we report a new laser processing method, combining the in situ graphitization of polyimide with simultaneous transfer of the graphene patterns to arbitrary substrates. The synthesis conditions are similar to those normally used for the well-known laser-induced graphene method. The approach is based on the enclosure of polyimide sheets between microscope glass slides. Graphene patterns have been successfully generated on glass and on PDMS, as well as graphene decorated with metals and oxides. In order to illustrate the usefulness of the proposed approach, the method was applied to the fabrication of hybrid supercapacitors, which exhibited very good electrochemical performance.