The Weight Hierarchy of Some Reducible Cyclic Codes

The generalized Hamming weights (GHWs) of linear codes are fundamental parameters, the knowledge of which is of great interest in many applications. However, to determine the GHWs of linear codes is difficult in general. In this paper, we study the GHWs for a family of reducible cyclic codes and obtain the complete weight hierarchy in several cases. This is achieved by extending the idea of Yang et al. into higher dimension and by employing some interesting combinatorial arguments. It shall be noted that these cyclic codes may have arbitrary number of nonzeros.

[1]  Shu Lin,et al.  On the optimum bit orders with respect to the state complexity of trellis diagrams for binary linear codes , 1993, IEEE Trans. Inf. Theory.

[2]  Venkatesan Guruswami,et al.  List decoding from erasures: bounds and code constructions , 2001, IEEE Trans. Inf. Theory.

[3]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[4]  Habong Chung The 2-nd Generalized Hamming Weight of Double-Error Correcting Binary BCH Codes and Their Duals Codes , 1991, AAECC.

[5]  Wolfgang Willems,et al.  On the Weight Hierarchy of Product Codes , 2004, Des. Codes Cryptogr..

[6]  Carlos Munuera,et al.  The Second and Third Generalized Hamming Weights of Hermitian Codes , 1999, IEEE Trans. Inf. Theory.

[7]  Torleiv Kløve The weight distribution of linear codes over GF(ql) having generator matrix over GF(q>) , 1978, Discret. Math..

[8]  Oscar Moreno,et al.  An Improved Serre Bound for Elementary Abelian Extensions of Fq(x) and the Generalized Hamming Weights of Duals of BCH Codes , 1998, IEEE Trans. Inf. Theory.

[9]  Cunsheng Ding,et al.  A Generic Construction of Cartesian Authentication Codes , 2007, IEEE Transactions on Information Theory.

[10]  양경철 On The Weight Hierarchy of Geometric Goppa Codes , 1993 .

[11]  Michael A. Tsfasman,et al.  Geometric approach to higher weights , 1995, IEEE Trans. Inf. Theory.

[12]  R. Calderbank,et al.  The Geometry of Two‐Weight Codes , 1986 .

[13]  Zhen Zhang,et al.  Network Generalized Hamming Weight , 2009, IEEE Transactions on Information Theory.

[14]  Gérard D. Cohen,et al.  Upper bounds on generalized distances , 1994, IEEE Trans. Inf. Theory.

[15]  Jing Yang,et al.  Weight Distribution of a Class of Cyclic Codes With Arbitrary Number of Zeros , 2013, IEEE Transactions on Information Theory.

[16]  Victor K.-W. Wei,et al.  On the generalized Hamming weights of product codes , 1993, IEEE Trans. Inf. Theory.

[17]  H. Niederreiter,et al.  Finite Fields: Encyclopedia of Mathematics and Its Applications. , 1997 .

[18]  Manuel Delgado,et al.  On the Weight Hierarchy of Codes Coming From Semigroups With Two Generators , 2013, IEEE Transactions on Information Theory.

[19]  Tor Helleseth,et al.  The weight hierarchy of the Kasami codes , 1995, Discret. Math..

[20]  G. vander Geer,et al.  Generalized Hamming Weights of Melas Codes and Dual Melas Codes , 1994, SIAM J. Discret. Math..

[21]  Philippe Delsarte,et al.  On subfield subcodes of modified Reed-Solomon codes (Corresp.) , 1975, IEEE Trans. Inf. Theory.

[22]  Peter Kulchyski and , 2015 .

[23]  Marcel van der Vlugt,et al.  Generalized Hamming weights of BCH(3) revisited , 1995, IEEE Trans. Inf. Theory.

[24]  Marcel van der Vlugt A note on generalized Hamming weights of BCH(2) , 1996, IEEE Trans. Inf. Theory.

[25]  Angela I. Barbero,et al.  The Weight Hierarchy of Hermitian Codes , 2000, SIAM J. Discret. Math..

[26]  Lawrence H. Ozarow,et al.  Wire-tap channel II , 1984, AT&T Bell Lab. Tech. J..

[27]  ShimChangshik,et al.  On the second generalized Hamming weight of the dual code of a double-error-correcting binary BCH code , 1995 .

[28]  Masaaki Homma,et al.  The second generalized Hamming weight for two-point codes on a Hermitian curve , 2009, Des. Codes Cryptogr..

[29]  Maria Bras-Amorós,et al.  New Lower Bounds on the Generalized Hamming Weights of AG Codes , 2014, IEEE Transactions on Information Theory.

[30]  James W. P. Hirschfeld,et al.  The weight hierarchy of higher dimensional Hermitian codes , 1994, IEEE Trans. Inf. Theory.

[31]  P. Vijay Kumar,et al.  On the weight hierarchy of geometric Goppa codes , 1994, IEEE Trans. Inf. Theory.

[32]  Henning Stichtenoth,et al.  Generalized Hamming weights for duals of BCH codes, and maximal algebraic function fields , 1996 .

[33]  Heeralal Janwa,et al.  On the generalized Hamming weights of cyclic codes , 1997, IEEE Trans. Inf. Theory.

[34]  Cem Güneri,et al.  Improvements on Generalized Hamming Weights of Some Trace Codes , 2006, Des. Codes Cryptogr..

[35]  Dongdai Lin,et al.  Generalized Hamming Weights of Irreducible Cyclic Codes , 2014, IEEE Transactions on Information Theory.

[36]  Tomohiko Uyematsu,et al.  Strongly-secure secret sharing based on linear codes can be characterized by generalized hamming weight , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[37]  Carlos Munuera,et al.  On the generalized Hamming weights of geometric-Goppa codes , 1994, IEEE Trans. Inf. Theory.

[38]  Tor Helleseth,et al.  Generalized Hamming weights of linear codes , 1992, IEEE Trans. Inf. Theory.

[39]  Jay Cheng,et al.  On generalized Hamming weights of binary primitive BCH codes with minimum distance one less than a power of two , 1997, IEEE Trans. Inf. Theory.

[40]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[41]  Torleiv Kløve,et al.  The weight distribution of irreducible cyclic codes with block lengths n1((q1-1)/N) , 1977, Discret. Math..

[42]  Henning Stichtenoth,et al.  Generalized Hamming weights of trace codes , 1994, IEEE Trans. Inf. Theory.

[43]  M. van der Vlugt,et al.  The Second Generalized Hamming Weight of the Dual Codes of Double-Error Correcting Binary BCH-Codes , 1995 .

[44]  Hans Georg Schaathun,et al.  A Lower Bound on the Weight Hierarchies of Product Codes , 2003, Discret. Appl. Math..

[45]  Marcel van der Vlugt On the Weight Hierarchy of Irreducible Cyclic Codes , 1995, J. Comb. Theory, Ser. A.

[46]  Tor Helleseth,et al.  Bounds on the minimum support weights , 1995, IEEE Trans. Inf. Theory.

[47]  Prasad Raghavendra,et al.  List decoding tensor products and interleaved codes , 2008, STOC '09.

[48]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[49]  J.-P. Cherdieu,et al.  On the Generalized Weights of a Class of Trace Codes , 2001 .

[50]  Heeralal Janwa,et al.  On Generalized Hamming Weights and the Covering Radius of Linear Codes , 2007, AAECC.

[51]  Marcel van der Vlugt,et al.  On generalized Hamming weights of BCH codes , 1994, IEEE Trans. Inf. Theory.

[52]  I. G. Núñez,et al.  Generalized Hamming Weights for Linear Codes , 2001 .

[53]  M. van der Vlugt,et al.  Quadratic forms, generalized Hamming weights of codes and curves with many points , 1994 .

[54]  Emina Soljanin,et al.  Secure Network Coding for Wiretap Networks of Type II , 2009, IEEE Transactions on Information Theory.

[55]  Marcel van der Vlugt,et al.  Fibre Products of Artin-Schreier Curves and Generalized Hamming Weights of Codes , 1995, J. Comb. Theory, Ser. A.

[56]  Victor K.-W. Wei,et al.  On the generalized Hamming weights of several classes of cyclic codes , 1991, IEEE Trans. Inf. Theory.

[57]  Tor Helleseth,et al.  On the weight hierarchy of the semiprimitive codes , 1996, Discret. Math..

[58]  G. David Forney,et al.  Dimension/length profiles and trellis complexity of linear block codes , 1994, IEEE Trans. Inf. Theory.

[59]  Habong Chung,et al.  On the second generalized Hamming weight of the dual code of a double-error-correcting binary BCH code , 1995, IEEE Trans. Inf. Theory.

[60]  Simon Litsyn,et al.  New Upper Bounds on Generalized Weights , 1999, IEEE Trans. Inf. Theory.

[61]  Jeng Yune Park The weight hierarchies of some product codes , 2000, IEEE Trans. Inf. Theory.

[62]  Ruud Pellikaan,et al.  Generalized Hamming Weights of q-ary Reed-Muller Codes , 1998, IEEE Trans. Inf. Theory.