Ranking and Context-awareness in Recommender Systems

In this thesis we report the results of our research on recommender systems, which addresses some of the critical scientific challenges that still remain open in this domain. Collaborative filtering (CF) is the most common technique of predicting the interests of a user by collecting preference information from many users. In order to determine which items from a collection may be favored by individual users, conventional CF approaches take the ratings previously assigned to items by a target user and use them together with ratings of users with similar preferences to predict the ratings of yet-unseen items. Then, items are recommended in a descending order according to their predicted ratings. While CF has been investigated and improved extensively over the past years, there is still room for substantial improvement. In this thesis we focus on improvement of two critical aspects of CF, namely ranking and context-awareness of the recommendations. In addition, we analyze new developments in the field of collaborative recommendation and elaborate on the challenges related to the evolution of recommender systems and their increasing impact in the future. Based on this analysis, we make recommendations for future research directions in this field.

[1]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[2]  Suhrid Balakrishnan,et al.  Collaborative ranking , 2012, WSDM '12.

[3]  Michael R. Lyu,et al.  SoRec: social recommendation using probabilistic matrix factorization , 2008, CIKM '08.

[4]  Douglas B. Terry,et al.  Using collaborative filtering to weave an information tapestry , 1992, CACM.

[5]  Rong Pan,et al.  Mind the gaps: weighting the unknown in large-scale one-class collaborative filtering , 2009, KDD.

[6]  Mingrui Wu,et al.  Gradient descent optimization of smoothed information retrieval metrics , 2010, Information Retrieval.

[7]  Jure Leskovec,et al.  Predicting positive and negative links in online social networks , 2010, WWW '10.

[8]  Hongbo Deng,et al.  Effective latent space graph-based re-ranking model with global consistency , 2009, WSDM '09.

[9]  Alexander J. Smola,et al.  Like like alike: joint friendship and interest propagation in social networks , 2011, WWW.

[10]  Ido Guy,et al.  Will recommenders kill search?: recommender systems - an industry perspective , 2010, RecSys '10.

[11]  Zheng Chen,et al.  Collaborative Users' Brand Preference Mining across Multiple Domains from Implicit Feedbacks , 2011, AAAI.

[12]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[13]  Quoc V. Le,et al.  Learning to Rank with Nonsmooth Cost Functions , 2006, Neural Information Processing Systems.

[14]  Tamara G. Kolda,et al.  Scalable Tensor Decompositions for Multi-aspect Data Mining , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[15]  John Riedl,et al.  GroupLens: an open architecture for collaborative filtering of netnews , 1994, CSCW '94.

[16]  Chris Anderson,et al.  The Long Tail: Why the Future of Business is Selling Less of More , 2006 .

[17]  Jun Wang,et al.  Adaptive diversification of recommendation results via latent factor portfolio , 2012, SIGIR '12.

[18]  L. Caballero,et al.  Near2Me: Design and Evaluation of a Personalized Recommender and Explorer for Off-the-beaten-track Travel Destinations , 2010 .

[19]  Michael R. Lyu,et al.  UserRec: A User Recommendation Framework in Social Tagging Systems , 2010, AAAI.

[20]  Lars Schmidt-Thieme,et al.  Fast context-aware recommendations with factorization machines , 2011, SIGIR.

[21]  Toshio Uchiyama,et al.  Classical music for rock fans?: novel recommendations for expanding user interests , 2010, CIKM.

[22]  Panagiotis Symeonidis,et al.  A Unified Framework for Providing Recommendations in Social Tagging Systems Based on Ternary Semantic Analysis , 2010, IEEE Transactions on Knowledge and Data Engineering.

[23]  Neil J. Hurley,et al.  Novelty and Diversity in Top-N Recommendation -- Analysis and Evaluation , 2011, TOIT.

[24]  Christos Faloutsos,et al.  Kronecker Graphs: An Approach to Modeling Networks , 2008, J. Mach. Learn. Res..

[25]  Martha Larson,et al.  Near2me: an authentic and personalized social media-based recommender for travel destinations , 2011, WSM '11.

[26]  Franca Garzotto,et al.  Comparative evaluation of recommender system quality , 2011, CHI Extended Abstracts.

[27]  F. Maxwell Harper,et al.  An Economic Model of User Rating in an Online Recommender System , 2005, User Modeling.

[28]  Matthew Richardson,et al.  Yes, there is a correlation: - from social networks to personal behavior on the web , 2008, WWW.

[29]  Yu Wang,et al.  Community-based greedy algorithm for mining top-K influential nodes in mobile social networks , 2010, KDD.

[30]  Yihong Gong,et al.  Combining content and link for classification using matrix factorization , 2007, SIGIR.

[31]  Roberto Turrin,et al.  Performance of recommender algorithms on top-n recommendation tasks , 2010, RecSys '10.

[32]  Christos Faloutsos,et al.  TANGENT: a novel, 'Surprise me', recommendation algorithm , 2009, KDD.

[33]  Shlomo Berkovsky,et al.  Group-based recipe recommendations: analysis of data aggregation strategies , 2010, RecSys '10.

[34]  Tie-Yan Liu,et al.  Directly optimizing evaluation measures in learning to rank , 2008, SIGIR.

[35]  Olivier Chapelle,et al.  Expected reciprocal rank for graded relevance , 2009, CIKM.

[36]  Lars Schmidt-Thieme,et al.  Factorization models for context-/time-aware movie recommendations , 2010 .

[37]  Alexander J. Smola,et al.  Maximum Margin Matrix Factorization for Collaborative Ranking , 2007 .

[38]  Thomas Hofmann,et al.  Latent semantic models for collaborative filtering , 2004, TOIS.

[39]  Mukkai S. Krishnamoorthy,et al.  A random walk method for alleviating the sparsity problem in collaborative filtering , 2008, RecSys '08.

[40]  Michael R. Lyu,et al.  Learning to recommend with trust and distrust relationships , 2009, RecSys '09.

[41]  Li Chen,et al.  Critiquing-based recommenders: survey and emerging trends , 2012, User Modeling and User-Adapted Interaction.

[42]  ChengXiang Zhai,et al.  Improving one-class collaborative filtering by incorporating rich user information , 2010, CIKM.

[43]  Qiang Yang,et al.  Transfer Learning in Collaborative Filtering for Sparsity Reduction , 2010, AAAI.

[44]  Luis M. de Campos,et al.  Managing uncertainty in group recommending processes , 2009, User Modeling and User-Adapted Interaction.

[45]  Robert Wetzker,et al.  A hybrid approach to item recommendation in folksonomies , 2009, ESAIR '09.

[46]  Francesco Ricci,et al.  Context-based splitting of item ratings in collaborative filtering , 2009, RecSys '09.

[47]  Alan Said,et al.  Putting things in context: Challenge on Context-Aware Movie Recommendation , 2010 .

[48]  Xing Xie,et al.  Learning travel recommendations from user-generated GPS traces , 2011, TIST.

[49]  Jian Wang,et al.  Utilizing marginal net utility for recommendation in e-commerce , 2011, SIGIR.

[50]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[51]  John Riedl,et al.  Collaborative Filtering Recommender Systems , 2011, Found. Trends Hum. Comput. Interact..

[52]  Yan Zheng Wei,et al.  A market-based approach to recommender systems , 2005, TOIS.

[53]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[54]  Tie-Yan Liu,et al.  Learning to rank: from pairwise approach to listwise approach , 2007, ICML '07.

[55]  Sean M. McNee,et al.  Being accurate is not enough: how accuracy metrics have hurt recommender systems , 2006, CHI Extended Abstracts.

[56]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[57]  Nitya Narasimhan,et al.  Using location for personalized POI recommendations in mobile environments , 2006, International Symposium on Applications and the Internet (SAINT'06).

[58]  Michael R. Lyu,et al.  Improving Recommender Systems by Incorporating Social Contextual Information , 2011, TOIS.

[59]  Pablo Castells,et al.  Group Recommender Systems: New Perspectives in the Social Web , 2012, Recommender Systems for the Social Web.

[60]  Martha Larson,et al.  CLiMF: learning to maximize reciprocal rank with collaborative less-is-more filtering , 2012, RecSys.

[61]  Philip S. Yu,et al.  Music Recommendation Using Content and Context Information Mining , 2010, IEEE Intelligent Systems.

[62]  Alexander J. Smola,et al.  Improving Maximum Margin Matrix Factorization , 2008, ECML/PKDD.

[63]  Deepak Agarwal,et al.  Regression-based latent factor models , 2009, KDD.

[64]  John Riedl,et al.  Shilling recommender systems for fun and profit , 2004, WWW '04.

[65]  Mark Goadrich,et al.  The relationship between Precision-Recall and ROC curves , 2006, ICML.

[66]  Thomas Hofmann,et al.  Large Margin Methods for Structured and Interdependent Output Variables , 2005, J. Mach. Learn. Res..

[67]  Sergej Sizov,et al.  GeoFolk: latent spatial semantics in web 2.0 social media , 2010, WSDM '10.

[68]  Lars Schmidt-Thieme,et al.  MyMediaLite: a free recommender system library , 2011, RecSys '11.

[69]  Ramanathan V. Guha,et al.  Propagation of trust and distrust , 2004, WWW '04.

[70]  Ido Guy,et al.  Do you know?: recommending people to invite into your social network , 2009, IUI.

[71]  M. E. J. Newman,et al.  Power laws, Pareto distributions and Zipf's law , 2005 .

[72]  Min Zhao,et al.  Adapting neighborhood and matrix factorization models for context aware recommendation , 2010, RecSys 2010.

[73]  Qiang Yang,et al.  Transfer learning for collaborative filtering via a rating-matrix generative model , 2009, ICML '09.

[74]  Yi Zhang,et al.  Filtering semi-structured documents based on faceted feedback , 2011, SIGIR.

[75]  L. Richard Ye,et al.  The Impact of Explanation Facilities in User Acceptance of Expert System Advice , 1995, MIS Q..

[76]  Filip Radlinski,et al.  A support vector method for optimizing average precision , 2007, SIGIR.

[77]  George Karypis,et al.  Item-based top-N recommendation algorithms , 2004, TOIS.

[78]  Martha Larson,et al.  Exploiting user similarity based on rated-item pools for improved user-based collaborative filtering , 2009, RecSys '09.

[79]  Gediminas Adomavicius,et al.  Incorporating contextual information in recommender systems using a multidimensional approach , 2005, TOIS.

[80]  Cong Yu,et al.  Group Recommendation: Semantics and Efficiency , 2009, Proc. VLDB Endow..

[81]  Bin Li,et al.  Cross-Domain Collaborative Filtering: A Brief Survey , 2011, 2011 IEEE 23rd International Conference on Tools with Artificial Intelligence.

[82]  Bamshad Mobasher,et al.  Towards Trustworthy Recommender Systems : An Analysis of Attack Models and Algorithm Robustness , 2007 .

[83]  Guy Shani,et al.  Evaluating Recommendation Systems , 2011, Recommender Systems Handbook.

[84]  Hang Li,et al.  AdaRank: a boosting algorithm for information retrieval , 2007, SIGIR.

[85]  Harald Steck,et al.  Item popularity and recommendation accuracy , 2011, RecSys '11.

[86]  Bin Cao,et al.  Multi-Domain Collaborative Filtering , 2010, UAI.

[87]  Michael R. Lyu,et al.  Effective missing data prediction for collaborative filtering , 2007, SIGIR.

[88]  Qiang Yang,et al.  One-Class Collaborative Filtering , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[89]  Martha Larson,et al.  TFMAP: optimizing MAP for top-n context-aware recommendation , 2012, SIGIR '12.

[90]  Daniel Tunkelang Recommendations as a conversation with the user , 2011, RecSys '11.

[91]  Jure Leskovec,et al.  The life and death of online groups: predicting group growth and longevity , 2012, WSDM '12.

[92]  Martha Larson,et al.  Mining mood-specific movie similarity with matrix factorization for context-aware recommendation , 2010 .

[93]  Christos Faloutsos,et al.  Graphs over time: densification laws, shrinking diameters and possible explanations , 2005, KDD '05.

[94]  Ioannis Konstas,et al.  On social networks and collaborative recommendation , 2009, SIGIR.

[95]  Yasuhiro Takishima,et al.  Context-Aware Preference Model Based on a Study of Difference between Real and Supposed Situation Data , 2009, UMAP.

[96]  Mouzhi Ge,et al.  Beyond accuracy: evaluating recommender systems by coverage and serendipity , 2010, RecSys '10.

[97]  David Heckerman,et al.  Empirical Analysis of Predictive Algorithms for Collaborative Filtering , 1998, UAI.

[98]  Michael J. Pazzani,et al.  Content-Based Recommendation Systems , 2007, The Adaptive Web.

[99]  Shivakant Mishra,et al.  Enhancing group recommendation by incorporating social relationship interactions , 2010, GROUP.

[100]  John Hannon,et al.  Recommending twitter users to follow using content and collaborative filtering approaches , 2010, RecSys '10.

[101]  Zheng Chen,et al.  Latent semantic analysis for multiple-type interrelated data objects , 2006, SIGIR.

[102]  Min Zhao,et al.  Online evolutionary collaborative filtering , 2010, RecSys '10.

[103]  John Riedl,et al.  Recommender systems: from algorithms to user experience , 2012, User Modeling and User-Adapted Interaction.

[104]  Michael R. Lyu,et al.  Learning to recommend with explicit and implicit social relations , 2011, TIST.

[105]  Xi Chen,et al.  Temporal Collaborative Filtering with Bayesian Probabilistic Tensor Factorization , 2010, SDM.

[106]  Nuria Oliver,et al.  Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering , 2010, RecSys '10.

[107]  Takahiro Hara,et al.  Mining people's trips from large scale geo-tagged photos , 2010, ACM Multimedia.

[108]  Yehuda Koren,et al.  Factorization meets the neighborhood: a multifaceted collaborative filtering model , 2008, KDD.

[109]  Panagiotis Symeonidis,et al.  Providing Justifications in Recommender Systems , 2008, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[110]  Alfred Kobsa,et al.  The Adaptive Web, Methods and Strategies of Web Personalization , 2007, The Adaptive Web.

[111]  Martha Larson,et al.  Tags as bridges between domains: improving recommendation with tag-induced cross-domain collaborative filtering , 2011, UMAP'11.

[112]  Stefan Siersdorfer,et al.  Social recommender systems for web 2.0 folksonomies , 2009, HT '09.

[113]  Sun Park,et al.  Novel Recommendation Based on Personal Popularity Tendency , 2011, 2011 IEEE 11th International Conference on Data Mining.

[114]  Neil J. Hurley,et al.  Collaborative recommendation: A robustness analysis , 2004, TOIT.

[115]  Jon M. Kleinberg,et al.  Using mixture models for collaborative filtering , 2008, J. Comput. Syst. Sci..

[116]  Yue Gao,et al.  W2Go: a travel guidance system by automatic landmark ranking , 2010, ACM Multimedia.

[117]  Martha Larson,et al.  Connecting with the collective: self-contained reranking for collaborative recommendation , 2010, CMM '10.

[118]  Xing Xie,et al.  Mining interesting locations and travel sequences from GPS trajectories , 2009, WWW '09.

[119]  Shuang-Hong Yang,et al.  Collaborative competitive filtering: learning recommender using context of user choice , 2011, SIGIR.

[120]  Hinrich Schütze,et al.  Introduction to information retrieval , 2008 .

[121]  Lars Schmidt-Thieme,et al.  Learning optimal ranking with tensor factorization for tag recommendation , 2009, KDD.

[122]  Deepak Agarwal,et al.  Localized factor models for multi-context recommendation , 2011, KDD.

[123]  Alan Hanjalic,et al.  List-wise learning to rank with matrix factorization for collaborative filtering , 2010, RecSys '10.

[124]  Pablo Castells,et al.  Semantic contextualisation in a news recommender system , 2009 .

[125]  Qiang Yang,et al.  EigenRank: a ranking-oriented approach to collaborative filtering , 2008, SIGIR '08.

[126]  J. Townsend,et al.  Multialternative Decision Field Theory: A Dynamic Connectionist Model of Decision Making , 2001 .

[127]  Gerard Salton,et al.  A vector space model for automatic indexing , 1975, CACM.

[128]  Nicole Novielli,et al.  Using Common Sense in Providing Personalized Recommendations in the Tourism Domain , 2009 .

[129]  Anita Elberse Should You Invest in the Long Tail , 2008 .

[130]  Wei-Ying Ma,et al.  Recommending friends and locations based on individual location history , 2011, ACM Trans. Web.

[131]  Paolo Avesani,et al.  Trust-aware recommender systems , 2007, RecSys '07.

[132]  Yehuda Koren,et al.  Collaborative filtering with temporal dynamics , 2009, KDD.

[133]  Kyung Hyan Yoo,et al.  Creating More Credible and Persuasive Recommender Systems: The Influence of Source Characteristics on Recommender System Evaluations , 2011, Recommender Systems Handbook.

[134]  Ruslan Salakhutdinov,et al.  Probabilistic Matrix Factorization , 2007, NIPS.

[135]  Chris Cornelis,et al.  Trust- and Distrust-Based Recommendations for Controversial Reviews , 2011, IEEE Intelligent Systems.

[136]  Alexander Tuzhilin,et al.  The long tail of recommender systems and how to leverage it , 2008, RecSys '08.

[137]  Yu He,et al.  The YouTube video recommendation system , 2010, RecSys '10.

[138]  Qiang Yang,et al.  Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence Transfer Learning to Predict Missing Ratings via Heterogeneous User Feedbacks , 2022 .

[139]  Luo Si,et al.  Flexible Mixture Model for Collaborative Filtering , 2003, ICML.

[140]  Martha Larson,et al.  Nontrivial landmark recommendation using geotagged photos , 2013, TIST.

[141]  Yehuda Koren,et al.  Matrix Factorization Techniques for Recommender Systems , 2009, Computer.

[142]  Robin D. Burke,et al.  Hybrid Recommender Systems: Survey and Experiments , 2002, User Modeling and User-Adapted Interaction.

[143]  Bart P. Knijnenburg,et al.  Explaining the user experience of recommender systems , 2012, User Modeling and User-Adapted Interaction.

[144]  Thore Graepel,et al.  Matchbox: large scale online bayesian recommendations , 2009, WWW '09.

[145]  Nagarajan Natarajan,et al.  Scalable Affiliation Recommendation using Auxiliary Networks , 2011, TIST.

[146]  Jun Wang,et al.  Unifying user-based and item-based collaborative filtering approaches by similarity fusion , 2006, SIGIR.

[147]  R. Sinnott Virtues of the Haversine , 1984 .

[148]  Panagiotis Symeonidis,et al.  Tag recommendations based on tensor dimensionality reduction , 2008, RecSys '08.

[149]  Martha Larson,et al.  How Far Are We in Trust-Aware Recommendation? , 2011, ECIR.

[150]  Jonathan L. Herlocker,et al.  Evaluating collaborative filtering recommender systems , 2004, TOIS.

[151]  Arun Sundararajan,et al.  Recommendation Networks and the Long Tail of Electronic Commerce , 2010, MIS Q..

[152]  Pavel Serdyukov,et al.  Placing flickr photos on a map , 2009, SIGIR.

[153]  Li Chen,et al.  Evaluating recommender systems from the user’s perspective: survey of the state of the art , 2012, User Modeling and User-Adapted Interaction.

[154]  Martha Larson,et al.  Personalized Landmark Recommendation Based on Geotags from Photo Sharing Sites , 2011, ICWSM.

[155]  Francesco Ricci,et al.  Improving recommender systems with adaptive conversational strategies , 2009, HT '09.

[156]  Alan Said,et al.  Group recommendation in context , 2011, CAMRa '11.

[157]  Jianying Hu,et al.  One-Class Matrix Completion with Low-Density Factorizations , 2010, 2010 IEEE International Conference on Data Mining.

[158]  Lars Schmidt-Thieme,et al.  BPR: Bayesian Personalized Ranking from Implicit Feedback , 2009, UAI.

[159]  Yehuda Koren,et al.  OrdRec: an ordinal model for predicting personalized item rating distributions , 2011, RecSys '11.

[160]  Johannes Schöning,et al.  Falling asleep with Angry Birds, Facebook and Kindle: a large scale study on mobile application usage , 2011, Mobile HCI.

[161]  Judy Kay,et al.  RECON: a reciprocal recommender for online dating , 2010, RecSys '10.

[162]  Gerhard Friedrich,et al.  A Taxonomy for Generating Explanations in Recommender Systems , 2011, AI Mag..

[163]  Changhu Wang,et al.  Photo2Trip: generating travel routes from geo-tagged photos for trip planning , 2010, ACM Multimedia.

[164]  Lars Schmidt-Thieme,et al.  Pairwise interaction tensor factorization for personalized tag recommendation , 2010, WSDM '10.

[165]  Min Zhao,et al.  Probabilistic latent preference analysis for collaborative filtering , 2009, CIKM.

[166]  Tomoharu Iwata,et al.  Travel route recommendation using geotags in photo sharing sites , 2010, CIKM.

[167]  Eric Horvitz,et al.  Social Choice Theory and Recommender Systems: Analysis of the Axiomatic Foundations of Collaborative Filtering , 2000, AAAI/IAAI.

[168]  Francesco Ricci,et al.  Group recommendations with rank aggregation and collaborative filtering , 2010, RecSys '10.

[169]  Stephen E. Robertson,et al.  SoftRank: optimizing non-smooth rank metrics , 2008, WSDM '08.

[170]  Tommi S. Jaakkola,et al.  Weighted Low-Rank Approximations , 2003, ICML.

[171]  Tie-Yan Liu,et al.  Learning to rank for information retrieval , 2009, SIGIR.

[172]  Yifan Hu,et al.  Collaborative Filtering for Implicit Feedback Datasets , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[173]  R. Plackett The Analysis of Permutations , 1975 .

[174]  Guy Shani,et al.  A Survey of Accuracy Evaluation Metrics of Recommendation Tasks , 2009, J. Mach. Learn. Res..

[175]  Pearl Pu,et al.  A recursive prediction algorithm for collaborative filtering recommender systems , 2007, RecSys '07.

[176]  Enrique Herrera-Viedma,et al.  A Filtering and Recommender System Prototype for Scholarly Users of Digital Libraries , 2009, WSKS.

[177]  Takashi Yagi,et al.  Group recommendation using feature space representing behavioral tendency and power balance among members , 2011, RecSys '11.

[178]  Chiranjib Bhattacharyya,et al.  Structured learning for non-smooth ranking losses , 2008, KDD.

[179]  Geoffrey J. Gordon,et al.  Relational learning via collective matrix factorization , 2008, KDD.

[180]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[181]  Xing Xie,et al.  Collaborative location and activity recommendations with GPS history data , 2010, WWW '10.

[182]  Ellen M. Voorhees,et al.  The TREC-8 Question Answering Track Report , 1999, TREC.

[183]  Masanori Sugimoto,et al.  An Outdoor Recommendation System based on User Location History , 2005, ubiPCMM.

[184]  Barry Smyth,et al.  Recommendation as Collaboration in Web Search , 2011, AI Mag..

[185]  A. Said,et al.  How social relationships affect user similarities , 2010 .

[186]  Xing Xie,et al.  Mining user similarity based on location history , 2008, GIS '08.

[187]  Greg Linden,et al.  Amazon . com Recommendations Item-to-Item Collaborative Filtering , 2001 .

[188]  Marcel J. T. Reinders,et al.  Using flickr geotags to predict user travel behaviour , 2010, SIGIR.

[189]  David R. Karger,et al.  Less is More Probabilistic Models for Retrieving Fewer Relevant Documents , 2006 .

[190]  Cong Yu,et al.  Automatic construction of travel itineraries using social breadcrumbs , 2010, HT '10.

[191]  Martha Larson,et al.  Mining contextual movie similarity with matrix factorization for context-aware recommendation , 2013, TIST.