Superefficiency in Nonparametric Function Estimation

Fixed parameter asymptotic statements are often used in the context of nonparametric curve estimation problems (e.g., nonparametric density or regression estimation). In this context several forms of superefficiency can occur. In contrast to what can happen in regular parametric problems, here every parameter point (e.g., unknown density or regression function) can be a point of superefficiency. We begin with an example which shows how fixed parameter asymptotic statements have often appeared in the study of adaptive kernel estimators, and how superefficiency can occur in this context. We then carry out a more systematic study of such fixed parameter statements. It is shown in four general settings how the degree of superefficiency attainable depends on the structural assumptions in each case.

[1]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[2]  M. Nussbaum Asymptotic Equivalence of Density Estimation and Gaussian White Noise , 1996 .

[3]  Le Cam,et al.  On some asymptotic properties of maximum likelihood estimates and related Bayes' estimates , 1953 .

[4]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[5]  A Lower Bound for the Risk in Estimating the Value of a Probability Density , 1990 .

[6]  M. Woodroofe On Choosing a Delta-Sequence , 1970 .

[7]  L. Brown,et al.  Asymptotic equivalence of nonparametric regression and white noise , 1996 .

[8]  Masafumi Akahira,et al.  An information inequality for the Bayes risk , 1996 .

[9]  D. Donoho,et al.  Minimax Risk Over Hyperrectangles, and Implications , 1990 .

[10]  J. Wolfowitz,et al.  Generalized Maximum Likelihood Estimators , 1966 .

[11]  Ian Abramson On Bandwidth Variation in Kernel Estimates-A Square Root Law , 1982 .

[12]  J. Hájek Local asymptotic minimax and admissibility in estimation , 1972 .

[13]  L. Brown,et al.  A constrained risk inequality with applications to nonparametric functional estimation , 1996 .

[14]  L. Brown Fundamentals of statistical exponential families: with applications in statistical decision theory , 1986 .

[15]  W. R. Schucany,et al.  Adaptive Bandwidth Choice for Kernel Regression , 1995 .

[16]  P. Bickel Minimax Estimation of the Mean of a Normal Distribution when the Parameter Space is Restricted , 1981 .

[17]  T. Gasser,et al.  Locally Adaptive Bandwidth Choice for Kernel Regression Estimators , 1993 .

[18]  Lawrence D. Brown,et al.  Information Inequalities for the Bayes Risk , 1990 .

[19]  Peter Hall On Plug-in Rules for Local Smoothing of Density Estimators , 1993 .

[20]  D. Donoho,et al.  Geometrizing Rates of Convergence, III , 1991 .