ML(n)BiCGStabt: A ML(n)BiCGStab Variant with A-transpose

The 1980 IDR method plays an important role in the history of Krylov subspace methods. It started the research of transpose-free Krylov subspace methods. In this paper, we attempt to bring back A-transpose to the research by presenting a new ML(n)BiCGStab algorithm named ML(n)BiCGStabt. ML(n)BiCGStabt involves A-transpose in its implementation. Comparisons of this new algorithm with the existing ML(n)BiCGStab algorithms will be made.

[1]  Gerard L. G. Sleijpen,et al.  Exploiting BiCGstab(ℓ) Strategies to Induce Dimension Reduction , 2010, SIAM J. Sci. Comput..

[2]  Martin B. van Gijzen,et al.  IDR(s): A Family of Simple and Fast Algorithms for Solving Large Nonsymmetric Systems of Linear Equations , 2008, SIAM J. Sci. Comput..

[3]  Masaaki Sugihara,et al.  GBi-CGSTAB(s, L): IDR(s) with higher-order stabilization polynomials , 2010, J. Comput. Appl. Math..

[4]  Roland W. Freund,et al.  An Implementation of the Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices , 1993, SIAM J. Sci. Comput..

[5]  Ronald B. Morgan,et al.  GMRES WITH DEFLATED , 2008 .

[6]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[7]  P. Sonneveld CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .

[8]  Man-Chung Yeung,et al.  ML(n)BiCGStabt: A ML(n)BiCGStab Variant with A-transpose , 2012, 2012 Fourth International Conference on Computational and Information Sciences.

[9]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[10]  Gerard L. G. Sleijpen,et al.  Reliable updated residuals in hybrid Bi-CG methods , 1996, Computing.

[11]  W. Joubert Generalized conjugate gradient and Lanczos methods for the solution of nonsymmetric systems of linear equations , 1990 .

[12]  M. B. Van Gijzen,et al.  An elegant IDR(s) variant that efficiently exploits bi-orthogonality properties , 2010 .

[13]  Martin H. Gutknecht,et al.  Eigenvalue computations based on IDR , 2013 .

[14]  D. R. Fokkema,et al.  BiCGstab(ell) for Linear Equations involving Unsymmetric Matrices with Complex Spectrum , 1993 .

[15]  Martin B. van Gijzen,et al.  Algorithm 913: An elegant IDR(s) variant that efficiently exploits biorthogonality properties , 2011, TOMS.

[16]  Man-Chung Yeung,et al.  ML(n)BiCGStab: Reformulation, Analysis and Implementation , 2010, ArXiv.

[17]  Wayne Joubert,et al.  Lanczos Methods for the Solution of Nonsymmetric Systems of Linear Equations , 1992, SIAM J. Matrix Anal. Appl..

[18]  Martin H. Gutknecht,et al.  Variants of BICGSTAB for Matrices with Complex Spectrum , 1993, SIAM J. Sci. Comput..

[19]  Peter Sonneveld,et al.  On the Convergence Behavior of IDR(s) and Related Methods , 2012, SIAM J. Sci. Comput..

[20]  Lei Du,et al.  A block IDR(s) method for nonsymmetric linear systems with multiple right-hand sides , 2011, J. Comput. Appl. Math..

[21]  Damian Loher Reliable nonsymmetric block Lanczos algorithms , 2006 .

[22]  Shao-Liang Zhang,et al.  GPBi-CG: Generalized Product-type Methods Based on Bi-CG for Solving Nonsymmetric Linear Systems , 1997, SIAM J. Sci. Comput..

[23]  P. Wesseling,et al.  Numerical experiments with a multiple grid and a preconditioned Lanczos type method , 1980 .

[24]  Martin H. Gutknecht,et al.  Lanczos-type solvers for nonsymmetric linear systems of equations , 1997, Acta Numerica.

[25]  Tony F. Chan,et al.  ML(k)BiCGSTAB: A BiCGSTAB Variant Based on Multiple Lanczos Starting Vectors , 1999, SIAM J. Sci. Comput..

[26]  Y. Saad The Lanczos Biorthogonalization Algorithm and Other Oblique Projection Methods for Solving Large Unsymmetric Systems , 1982 .

[27]  R. Fletcher Conjugate gradient methods for indefinite systems , 1976 .

[28]  Martin H. Gutknecht,et al.  Eigenvalue Computations Based on IDR , 2013, SIAM J. Matrix Anal. Appl..

[29]  Man-Chung Yeung,et al.  An introduction to ML(n)BiCGStab , 2011, ArXiv.

[30]  P. Sonneveld,et al.  IDR(s): A family of simple and fast algorithms for solving large nonsymmetric linear systems , 2007 .

[31]  M. Gutknecht A Completed Theory of the Unsymmetric Lanczos Process and Related Algorithms. Part II , 1994, SIAM J. Matrix Anal. Appl..

[32]  Seiji Fujino,et al.  GPBiCG(m, l): a hybrid of BiCGSTAB and GPBiCG methods with efficiency and robustness , 2002 .

[33]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[34]  Zhishun A. Liu,et al.  A Look Ahead Lanczos Algorithm for Unsymmetric Matrices , 1985 .

[35]  Daniel Boley,et al.  Transpose-free multiple Lanczos and its application in Padé approximation , 2005 .