Genome Analysis Pipeline I/O Workload Analysis

As size of genomic data is increasing rapidly, the needs for high-performance computing system to process and store genomic data is also increasing. In this paper, we captured I/O trace of a system which analyzed 500 million sequence reads data in Genome analysis pipeline for 86 hours. The workload created 630 file with size of 1031.7 Gbyte and deleted 535 file with size of 91.4 GByte. What is interesting in this workload is that 80% of all accesses are from only two files among 654 files in the system. Size of read and write request in the workload was larger than 512 KByte and 1 Mbyte, respectively. Majority of read write operations show random and sequential patterns, respectively. Throughput and bandwidth observed in each processing phase was different from each other.