Global-Local Mixtures

Global-local mixtures are derived from the Cauchy-Schlomilch and Liouville integral transformation identities. We characterize well-known normal-scale mixture distributions including the Laplace or lasso, logit and quantile as well as new global-local mixtures. We also apply our methodology to convolutions that commonly arise in Bayesian inference. Finally, we conclude with a conjecture concerning bridge and uniform correlation mixtures.

[1]  James G. Scott,et al.  On the half-cauchy prior for a global scale parameter , 2011, 1104.4937.

[2]  D. F. Andrews,et al.  Scale Mixtures of Normal Distributions , 1974 .

[3]  Nicholas G. Polson,et al.  The Horseshoe+ Estimator of Ultra-Sparse Signals , 2015, 1502.00560.

[4]  Mark E. Johnson,et al.  Constructing and simulating multivariate distributions using khintchine's theorem , 1982 .

[5]  M. C. Jones On Khintchine's Theorem and its Place in Random Variate Generation , 2002 .

[6]  J. J. Foncannon Irresistible integrals: symbolics, analysis and experiments in the evaluation of integrals , 2006 .

[7]  Xiao-Li Meng,et al.  An unexpected encounter with Cauchy and L\'evy , 2015 .

[8]  Tilmann Gneiting,et al.  Normal scale mixtures and dual probability densities , 1997 .

[9]  James G. Scott,et al.  Data augmentation for non-Gaussian regression models using variance-mean mixtures , 2011, 1103.5407.

[10]  James G. Scott,et al.  The Bayesian bridge , 2011, 1109.2279.

[11]  V. Seshadri,et al.  Halphen's Laws , 2006 .

[12]  B. Mallick,et al.  Comment on article by Polson and Scott , 2011 .

[13]  M. C. Jones,et al.  Reciprocal symmetry, unimodality and Khintchine’s theorem , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[14]  James G. Scott,et al.  Bayesian Inference for Logistic Models Using Pólya–Gamma Latent Variables , 2012, 1205.0310.

[15]  R. Baker Probabilistic Applications of the Schlömilch Transformation , 2008 .

[16]  Nicholas G. Polson,et al.  Default Bayesian Analysis with Global-Local Shrinkage Priors , 2015, 1510.03516.

[17]  Lawrence D. Brown,et al.  Uniform Correlation Mixture of Bivariate Normal Distributions and Hypercubically Contoured Densities That Are Marginally Normal , 2014, 1511.06190.

[18]  Kenneth Kreutz-Delgado,et al.  AMICA : An Adaptive Mixture of Independent Component Analyzers with Shared Components , 2011 .

[19]  P. Levy Sur certains processus stochastiques homogènes , 1940 .

[20]  M. C. Jones Generating distributions by transformation of scale , 2014 .

[21]  O. Barndorff-Nielsen,et al.  Infinite divisibility of the hyperbolic and generalized inverse Gaussian distributions , 1977 .

[22]  O. Barndorff-Nielsen,et al.  Normal Variance-Mean Mixtures and z Distributions , 1982 .

[23]  Nicholas G. Polson,et al.  Data augmentation for support vector machines , 2011 .

[24]  The Cauchy–Schlömilch transformation , 2010, Integral Transforms and Special Functions.