Are urban material gradients transferable between areas?
暂无分享,去创建一个
Uta Heiden | Tobia Lakes | Hannes Feilhauer | Chaonan Ji | H. Feilhauer | T. Lakes | U. Heiden | Chao Ji
[1] S. Schmidtlein,et al. Mapping of continuous floristic gradients in grasslands using hyperspectral imagery , 2004 .
[2] Roger Bivand,et al. Bindings for the Geospatial Data Abstraction Library , 2015 .
[3] Luis Guanter,et al. EeteS—The EnMAP End-to-End Simulation Tool , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.
[4] Tobia Lakes,et al. The urban environmental indicator “Biotope Area Ratio”—An enhanced approach to assess and manage the urban ecosystem services using high resolution remote-sensing , 2012 .
[5] Birgit Kleinschmit,et al. Utilizing a PLSR-Based Band-Selection Procedure for Spectral Feature Characterization of Floristic Gradients , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.
[6] G. Foody,et al. Let your maps be fuzzy!—Class probabilities and floristic gradients as alternatives to crisp mapping for remote sensing of vegetation , 2020, Remote Sensing in Ecology and Conservation.
[7] A. H. Auer,et al. Correlation of Land Use and Cover with Meteorological Anomalies , 1978 .
[8] Antonio J. Plaza,et al. This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1 Spectral–Spatial Hyperspectral Image Segmentation Using S , 2022 .
[9] Hannes Feilhauer,et al. Combining Isomap ordination and imaging spectroscopy to map continuous floristic gradients in a heterogeneous landscape , 2011 .
[10] Yan Zhou,et al. Land cover mapping in urban environments using hyperspectral APEX data: A study case in Baden, Switzerland , 2018, Int. J. Appl. Earth Obs. Geoinformation.
[11] G. F. Hughes,et al. On the mean accuracy of statistical pattern recognizers , 1968, IEEE Trans. Inf. Theory.
[12] S. Frontier. Étude de la décroissance des valeurs propres dans une analyse en composantes principales: Comparaison avec le modd́le du bâton brisé , 1976 .
[13] Jon Atli Benediktsson,et al. Recent Advances in Techniques for Hyperspectral Image Processing , 2009 .
[14] Uta Heiden,et al. Sampling Robustness in Gradient Analysis of Urban Material Mixtures , 2022, IEEE Transactions on Geoscience and Remote Sensing.
[15] Jinfeng Wang,et al. A review of spatial sampling , 2012 .
[16] Donald A. Jackson. STOPPING RULES IN PRINCIPAL COMPONENTS ANALYSIS: A COMPARISON OF HEURISTICAL AND STATISTICAL APPROACHES' , 1993 .
[17] K. Seto,et al. Global urban land-use trends and climate impacts , 2009 .
[18] Hermann Kaufmann,et al. Determination of robust spectral features for identification of urban surface materials in hyperspectral remote sensing data , 2007 .
[19] R. Green,et al. An introduction to the NASA Hyperspectral InfraRed Imager (HyspIRI) mission and preparatory activities , 2015 .
[20] Ruben Van De Kerchove,et al. Transferability of species distribution models for the detection of an invasive alien bryophyte using imaging spectroscopy data , 2018, International Journal of Applied Earth Observation and Geoinformation.
[21] Onisimo Mutanga,et al. Transferability of species distribution models for the detection of an invasive alien bryophyte using imaging spectroscopy data , 2018, Int. J. Appl. Earth Obs. Geoinformation.
[22] Uta Heiden,et al. Gradients in urban material composition: A new concept to map cities with spaceborne imaging spectroscopy data , 2019, Remote Sensing of Environment.
[23] Carsten Neumann,et al. Spatial nature conservation monitoring on the basis of ecological gradients using imaging spectroscopy , 2017 .
[24] M. Ridd. Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing: comparative anatomy for cities , 1995 .
[25] Qihao Weng,et al. Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends , 2012 .
[26] Angela Lausch,et al. Mapping the local variability of Natura 2000 habitats with remote sensing , 2014 .
[27] A. Okujeni,et al. Imaging Spectroscopy of Urban Environments , 2018, Surveys in Geophysics.
[28] J. Nieke,et al. Status: Copernicus Hyperspectral Imaging Mission For The Environment (CHIME) , 2019, IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium.
[29] Rudolf Richter,et al. Data Products, Quality and Validation of the DLR Earth Sensing Imaging Spectrometer (DESIS) , 2019, Sensors.
[30] Margaret E. Gardner,et al. Spectrometry for urban area remote sensing—Development and analysis of a spectral library from 350 to 2400 nm , 2004 .
[31] Patrick Hostert,et al. The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation , 2015, Remote. Sens..
[32] Donald A. Jackson,et al. How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test , 2001, Oecologia.
[33] D. Griffith. Effective Geographic Sample Size in the Presence of Spatial Autocorrelation , 2005 .
[34] W. Heldens. Use of airborne hyperspectral data and height information to support urban micro-climate characterisation , 2010 .
[35] Fred A. Kruse,et al. Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping , 2003, IEEE Trans. Geosci. Remote. Sens..
[36] T. Esch,et al. Urban structure type characterization using hyperspectral remote sensing and height information , 2012 .
[37] Ben Somers,et al. Urban tree health assessment using airborne hyperspectral and LiDAR imagery , 2018, Int. J. Appl. Earth Obs. Geoinformation.