MINIMISING THE RISK OF COLLATERAL DAMAGE WITH THE KALMAN-LEVY FILTER
暂无分享,去创建一个
[1] D. Sornette,et al. The Kalman—Lévy filter , 2000, cond-mat/0004369.
[2] K. Knight. Stable Non-Gaussian Random Processes Gennady Samorodnitsky and Murad S. Taqqu Chapman and Hall, 1994 , 1997, Econometric Theory.
[3] Moira I. Smith,et al. Performance limits for multiplatform scene-referenced navigation systems , 2001, SPIE Defense + Commercial Sensing.
[4] D. Sornette. Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools , 2000 .
[5] Jason F. Ralph,et al. Air–to–ground weapon aiming — a synopsis and a look to the future , 2001, The Aeronautical Journal (1968).
[6] T. Grundy,et al. Progress in Astronautics and Aeronautics , 2001 .
[7] Marek Musiela,et al. A generalization of the Kalman filter to models with infinite variance , 1993 .
[8] Fazil A. Aliev,et al. Evaluation of convergence rate in the central limit theorem for the Kalman filter , 1999, IEEE Trans. Autom. Control..
[9] Raisa E. Feldman,et al. Optimal Filtering of a Gaussian Signal in the Presence of Lévy Noise , 1999, SIAM J. Appl. Math..