g-Engineering in Hybrid Rotaxanes To Create AB and AB2 Electron Spin Systems: EPR Spectroscopic Studies of Weak Interactions between Dissimilar Electron Spin Qubits.

Hybrid [2]rotaxanes and pseudorotaxanes are reported where the magnetic interaction between dissimilar spins is controlled to create AB and AB2 electron spin systems, allowing independent control of weakly interacting S=${{ 1/2 }}$ centers.

[1]  T. Takui,et al.  Triple-stranded metallo-helicates addressable as Lloyd's electron spin qubits. , 2010, Journal of the American Chemical Society.

[2]  David A. Leigh,et al.  Hybrid organic–inorganic rotaxanes and molecular shuttles , 2009, Nature.

[3]  S. Blundell,et al.  Will spin-relaxation times in molecular magnets permit quantum information processing? , 2006, Physical review letters.

[4]  Rebecca J. Docherty,et al.  Chemical control of spin propagation between heterometallic rings. , 2011, Chemistry.

[5]  Stephen Hill,et al.  Influence of electronic spin and spin-orbit coupling on decoherence in mononuclear transition metal complexes. , 2014, Journal of the American Chemical Society.

[6]  V. Muñoz,et al.  Kinetics and Dynamics of Loops, α-Helices, β-Hairpins, and Fast-Folding Proteins , 1998 .

[7]  Fernando Luis,et al.  Heterodimetallic [LnLn′] Lanthanide Complexes: Toward a Chemical Design of Two-Qubit Molecular Spin Quantum Gates , 2014, Journal of the American Chemical Society.

[8]  Laura Carthy,et al.  Rings and threads as linkers in metal-organic frameworks and poly-rotaxanes. , 2013, Chemical communications.

[9]  Jeremy Levy,et al.  Quantum computing with spin cluster qubits. , 2003, Physical review letters.

[10]  S Lloyd,et al.  A Potentially Realizable Quantum Computer , 1993, Science.

[11]  A. Lascialfari,et al.  Local spin density in the Cr7Ni antiferromagnetic molecular ring and 53Cr-NMR , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[12]  S. Teat,et al.  Synthesis, structure, and dynamic properties of hybrid organic-inorganic rotaxanes. , 2010, Journal of the American Chemical Society.

[13]  C J Wedge,et al.  Chemical engineering of molecular qubits. , 2012, Physical review letters.

[14]  R. Bittl,et al.  Pulsed electron-electron double resonance on multinuclear metal clusters: assignment of spin projection factors based on the dipolar interaction. , 2002, Journal of the American Chemical Society.

[15]  Masahiro Kitagawa,et al.  A synthetic two-spin quantum bit: g-engineered exchange-coupled biradical designed for controlled-NOT gate operations. , 2012, Angewandte Chemie.

[16]  Gabriel Aeppli,et al.  Potential for spin-based information processing in a thin-film molecular semiconductor , 2013, Nature.

[17]  F. Tuna,et al.  Heterometallic rings made from chromium stick together easily. , 2008, Angewandte Chemie.

[18]  Eugenio Coronado,et al.  Spin qubits with electrically gated polyoxometalate molecules. , 2007, Nature nanotechnology.

[19]  Arthur Schweiger,et al.  EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. , 2006, Journal of magnetic resonance.

[20]  S. Eaton,et al.  Enhancement of electron spin relaxation rates of metalloporphyrins due to interaction with a faster relaxing metal bound to an appended bipyridyl , 1997 .

[21]  F Troiani,et al.  Molecular engineering of antiferromagnetic rings for quantum computation. , 2004, Physical review letters.

[22]  M. Nakahara,et al.  Molecular electron-spin quantum computers and quantum information processing: pulse-based electron magnetic resonance spin technology applied to matter spin-qubits , 2009 .

[23]  S. Carretta,et al.  A ring cycle: studies of heterometallic wheels. , 2007, Chemical communications.

[24]  F. Neese,et al.  EPR spectroscopy of a family of Cr(III) 7M(II) (M = Cd, Zn, Mn, Ni) "wheels": studies of isostructural compounds with different spin ground states. , 2009, Chemistry.

[25]  G. Buettner,et al.  A limit function for long-range ferromagnetic and antiferromagnetic superexchange , 1979 .

[26]  Michael N. Leuenberger,et al.  Quantum computing in molecular magnets , 2000, Nature.

[27]  E. McInnes,et al.  Physical studies of heterometallic rings: an ideal system for studying magnetically-coupled systems. , 2013, Chemical Society reviews.

[28]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.