A General Equilibrium and Preference Free Model for Pricing Options Under Transformed Gamma Distribution

The gamma class of distributions encompasses several important distributions, either as special or limiting cases or through simple transformations. Here we derived closed form and preference free European option pricing formulae for various (transformed) gamma distributions under the general equilibrium RNVR framework. The gamma class of distributions is used historically in hydrology for modelling natural events. Our models can be used to price derivatives associated with these natural phenomena, which will help to encourage greater risk sharing through financial securitization. Our pricing formulae are theoretically sound even if the underlyings and the derivative instruments are not (frequently) traded. © 2009 Wiley Periodicals, Inc. Jrl Fut Mark 30:409–431, 2010

[1]  António Câmara,et al.  A Generalization of the Brennan-Rubinstein Approach for the Pricing of Derivatives , 2003 .

[2]  D. L. Hanson,et al.  ON THE THEORY OF RISK AVERSION , 1970 .

[3]  A. W. Kemp,et al.  Continuous Bivariate Distributions, Emphasising Applications , 1991 .

[4]  A. T. McKay,et al.  Sampling from Batches , 1934 .

[5]  Mark Rubinstein,et al.  The Valuation of Uncertain Income Streams and the Pricing of Options , 1976 .

[6]  Marti G. Subrahmanyam,et al.  The Valuation of Multivariate Contingent Claims in Discrete Time Models , 1984 .

[7]  Kanti V. Mardia,et al.  Families of Bivariate Distributions. , 1971 .

[8]  Elyès Jouini,et al.  Equilibrium Pricing in Incomplete Markets , 2003, Journal of Financial and Quantitative Analysis.

[9]  Richard Coe,et al.  A Model Fitting Analysis of Daily Rainfall Data , 1984 .

[10]  S. Yue,et al.  A review of bivariate gamma distributions for hydrological application , 2001 .

[11]  Mark D. Schroder,et al.  Risk‐Neutral Parameter Shifts and Derivatives Pricing in Discrete Time , 2004 .

[12]  Hans U. Gerber,et al.  IV Option Pricing by Esscher Transforms , 2002 .

[13]  Michael J. Brennan,et al.  The Pricing of Contingent Claims in Discrete Time Models , 1979 .

[14]  M. Rubinstein. Implied Binomial Trees , 1994 .

[15]  António Câmara Option Prices Sustained by Risk‐Preferences* , 2005 .

[16]  V. Henderson,et al.  VALUATION OF CLAIMS ON NONTRADED ASSETS USING UTILITY MAXIMIZATION , 2002 .

[17]  L. Vasiliades,et al.  Rainfall-frequency mapping for Greece , 2001 .

[18]  Richard C. Stapleton,et al.  Two-dimensional risk-neutral valuation relationships for the pricing of options , 2004 .

[19]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[20]  Anna Nagurney,et al.  Foundations of Financial Economics , 1997 .

[21]  Chi-Fu Huang,et al.  Foundations for financial economics , 1988 .

[22]  M. Rubinstein. Displaced Diffusion Option Pricing , 1983 .

[23]  Zhongquan Zhou An Equilibrium Analysis of Hedging with Liquidity Constraints, Speculation, and Government Price Subsidy in a Commodity Market , 1998 .

[24]  Chin-Diew Lai,et al.  Continuous Bivariate Distributions, Emphasising Applications , 1992 .

[25]  V. N. Sharda,et al.  Modelling weekly rainfall data for crop planning in a sub-humid climate of India , 2005 .

[26]  S. Heston Invisible Parameters in Option Prices , 1993 .

[27]  R. Savickas A Simple Option‐Pricing Formula , 2002 .

[28]  David Cass,et al.  Competitive Equilibrium with Incomplete Financial Markets , 2006 .

[29]  S. Poon,et al.  General Equilibrium and Risk Neutral Framework for Option Pricing with a Mixture of Distributions , 2008 .