An interpretation of intuitionistic fuzzy sets in terms of evidence theory: Decision making aspect

This paper presents a new interpretation of intuitionistic fuzzy sets in the framework of the Dempster-Shafer theory of evidence (DST). This interpretation makes it possible to represent all mathematical operations on intuitionistic fuzzy values as the operations on belief intervals. Such approach allows us to use directly the Dempster's rule of combination to aggregate local criteria presented by intuitionistic fuzzy values in the decision making problem. The usefulness of the developed method is illustrated with the known example of multiple criteria decision making problem. The proposed approach and a new method for interval comparison based on DST, allow us to solve multiple criteria decision making problem without intermediate defuzzification when not only criteria, but their weights are intuitionistic fuzzy values.

[1]  Silvia Muzzioli,et al.  Note on ranking fuzzy triangular numbers , 1998, Int. J. Intell. Syst..

[2]  Jian-Bo Yang,et al.  A two-stage logarithmic goal programming method for generating weights from interval comparison matrices , 2005, Fuzzy Sets Syst..

[3]  Torsten Schaub,et al.  Introduction to Inconsistency Tolerance , 2005, Inconsistency Tolerance.

[4]  Nikola Kasabov Fril—fuzzy and evidential reasoning in artificial intelligence , 1996 .

[5]  Deng-Feng Li,et al.  Multiattribute decision making models and methods using intuitionistic fuzzy sets , 2005, J. Comput. Syst. Sci..

[6]  Dov M. Gabbay,et al.  Handbook of Philosophical Logic , 2002 .

[7]  Etienne E. Kerre,et al.  Reasonable properties for the ordering of fuzzy quantities (II) , 2001, Fuzzy Sets Syst..

[8]  J. Kacprzyk,et al.  Group decision making under intuitionistic fuzzy preference relations , 1998 .

[9]  Ronald R. Yager,et al.  Multiple objective decision-making using fuzzy sets , 1977 .

[10]  Robert Steven Patching,et al.  Similarity based on mutual support in mass assignment linked intuitionistic fuzzy sets , 2008 .

[11]  Zeshui Xu,et al.  Intuitionistic Fuzzy Aggregation Operators , 2007, IEEE Transactions on Fuzzy Systems.

[12]  Gui-Wu Wei,et al.  GRA method for multiple attribute decision making with incomplete weight information in intuitionistic fuzzy setting , 2010, Knowl. Based Syst..

[13]  Zhongsheng Hua,et al.  A DS-AHP approach for multi-attribute decision making problem with incomplete information , 2008, Expert Syst. Appl..

[14]  Didier Dubois,et al.  Ranking fuzzy numbers in the setting of possibility theory , 1983, Inf. Sci..

[15]  Jonathan Lawry An Overview of Computing with Words using Label Semantics , 2008, Fuzzy Sets and Their Extensions: Representation, Aggregation and Models.

[16]  Zeshui Xu,et al.  Dynamic intuitionistic fuzzy multi-attribute decision making , 2008, Int. J. Approx. Reason..

[17]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[18]  Humberto Bustince,et al.  Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets , 1996, Fuzzy Sets Syst..

[19]  R. Yager,et al.  Intuitionistic fuzzy interpretations of multi-person multi-criteria decision making , 2002, Proceedings First International IEEE Symposium Intelligent Systems.

[20]  Chris Cornelis,et al.  Survey of the Research On Intuitionistic Fuzzy Sets , 2002, JCIS.

[21]  Zhang Dong-feng Multi-criteria Fuzzy Decision Making Based on Probability Degree of Vague Sets , 2008 .

[22]  R. Mesiar,et al.  Aggregation operators: new trends and applications , 2002 .

[23]  Malcolm J. Beynon,et al.  DS/AHP method: A mathematical analysis, including an understanding of uncertainty , 2002, Eur. J. Oper. Res..

[24]  P. Sevastianov,et al.  MCDM in a fuzzy setting: Investment projects assessment application , 2006 .

[25]  Pascal Vasseur,et al.  Perceptual organization approach based on Dempster-Shafer theory , 1999, Pattern Recognit..

[26]  Hung T. Nguyen,et al.  Uncertainty Models for Knowledge-Based Systems; A Unified Approach to the Measurement of Uncertainty , 1985 .

[27]  Chris Cornelis,et al.  Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: construction, classification, application , 2004, Int. J. Approx. Reason..

[28]  Ronald R. Yager,et al.  Modeling Uncertainty Using Partial Information , 1999, Inf. Sci..

[29]  R. Mesiar,et al.  Aggregation operators: properties, classes and construction methods , 2002 .

[30]  Catherine K. Murphy Combining belief functions when evidence conflicts , 2000, Decis. Support Syst..

[31]  Edward H. Shortliffe,et al.  The Dempster-Shafer theory of evidence , 1990 .

[32]  Thierry Denoeux,et al.  Conjunctive and disjunctive combination of belief functions induced by nondistinct bodies of evidence , 2008, Artif. Intell..

[33]  H. Zimmermann Fuzzy sets, decision making, and expert systems , 1987 .

[34]  Pavel V. Sevastjanov,et al.  Two-objective method for crisp and fuzzy interval comparison in optimization , 2006, Comput. Oper. Res..

[35]  Anthony Hunter,et al.  Approaches to Measuring Inconsistent Information , 2005, Inconsistency Tolerance.

[36]  Malcolm J. Beynon,et al.  Understanding local ignorance and non-specificity within the DS/AHP method of multi-criteria decision making , 2005, Eur. J. Oper. Res..

[37]  Richard W. Jones,et al.  A framework for intelligent medical diagnosis using the theory of evidence , 2002, Knowl. Based Syst..

[38]  Z. S. Xu,et al.  The uncertain OWA operator , 2002, Int. J. Intell. Syst..

[39]  Rolf Haenni,et al.  Are alternatives to Dempster's rule of combination real alternatives?: Comments on "About the belief function combination and the conflict management problem" - Lefevre et al , 2002, Inf. Fusion.

[40]  Zeshui Xu,et al.  Some geometric aggregation operators based on intuitionistic fuzzy sets , 2006, Int. J. Gen. Syst..

[41]  Ronald R. Yager,et al.  Intuitionistic fuzzy graph interpretations of multi-person multi-criteria decision making , 2003, EUSFLAT Conf..

[42]  Kari Sentz,et al.  Combination of Evidence in Dempster-Shafer Theory , 2002 .

[43]  Janusz Kacprzyk,et al.  A New Similarity Measure for Intuitionistic Fuzzy Sets: Straightforward Approaches may not work , 2007, 2007 IEEE International Fuzzy Systems Conference.

[44]  Eulalia Szmidt,et al.  A NEW APPROACH TO RANKING ALTERNATIVES EXPRESSED VIA INTUITIONISTIC FUZZY SETS , 2008 .

[45]  Humberto Bustince,et al.  Mathematical analysis of interval-valued fuzzy relations: Application to approximate reasoning , 2000, Fuzzy Sets Syst..

[46]  Gui-Wu Wei,et al.  Maximizing deviation method for multiple attribute decision making in intuitionistic fuzzy setting , 2008, Knowl. Based Syst..

[47]  Shyi-Ming Chen,et al.  Handling multicriteria fuzzy decision-making problems based on vague set theory , 1994 .

[48]  Przemyslaw Grzegorzewski,et al.  Some notes on (Atanassov's) intuitionistic fuzzy sets , 2005, Fuzzy Sets Syst..

[49]  Moti Schneider,et al.  On the use of interval mathematics in fuzzy expert systems , 1994, Int. J. Intell. Syst..

[50]  Humberto Bustince,et al.  On the relevance of some families of fuzzy sets , 2007, Fuzzy Sets Syst..

[51]  R. Yager On the dempster-shafer framework and new combination rules , 1987, Inf. Sci..

[52]  Philippe Smets,et al.  Analyzing the combination of conflicting belief functions , 2007, Inf. Fusion.

[53]  Marc Roubens,et al.  Fuzzy Preference Modelling and Multicriteria Decision Support , 1994, Theory and Decision Library.

[54]  Rajkumer Roy ISPE International Conference on Concurrent Engineering , 2006 .

[55]  Vladik Kreinovich,et al.  Dirty Pages of Logarithm Tables, Lifetime of the Universe, and (Subjective) Probabilities on Finite and Infinite Intervals , 2003, Reliab. Comput..

[56]  Zun-Quan Xia,et al.  Multicriteria fuzzy decision-making methods based on intuitionistic fuzzy sets , 2007, J. Comput. Syst. Sci..

[57]  K. Atanassov New operations defined over the intuitionistic fuzzy sets , 1994 .

[58]  W.-L. Gau,et al.  Vague sets , 1993, IEEE Trans. Syst. Man Cybern..

[59]  Zeshui Xu,et al.  Some models for deriving the priority weights from interval fuzzy preference relations , 2008, Eur. J. Oper. Res..

[60]  Pavel V. Sevastjanov,et al.  Fuzzy modeling of manufacturing and logistic systems , 2003, Math. Comput. Simul..

[61]  Didier Dubois,et al.  Terminological difficulties in fuzzy set theory - The case of "Intuitionistic Fuzzy Sets" , 2005, Fuzzy Sets Syst..

[62]  P. Sevastianov Numerical methods for interval and fuzzy number comparison based on the probabilistic approach and Dempster-Shafer theory , 2007 .

[63]  Huawen Liu,et al.  Multi-criteria decision-making methods based on intuitionistic fuzzy sets , 2007, Eur. J. Oper. Res..

[64]  Vladik Kreinovich,et al.  Fair Division Under Interval Uncertainty , 2000, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[65]  Henri Prade,et al.  Representation and combination of uncertainty with belief functions and possibility measures , 1988, Comput. Intell..

[66]  Zeshui Xu,et al.  Note on “Some models for deriving the priority weights from interval fuzzy preference relations” , 2008 .

[67]  J. Kacprzyk,et al.  Advances in the Dempster-Shafer theory of evidence , 1994 .

[68]  Yuri Gureoich Intuitionistic Logic , 2008 .

[69]  Chris J. Hinde,et al.  Semantic transfer and contradictory evidence in intuitionistic fuzzy sets , 2008, 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence).

[70]  Chris J. Hinde,et al.  Inconsistency and semantic unification , 2006, Fuzzy Sets Syst..

[71]  Etienne E. Kerre,et al.  On the position of intuitionistic fuzzy set theory in the framework of theories modelling imprecision , 2007, Inf. Sci..

[72]  Ronald R. Yager,et al.  Ranking Fuzzy Numbers Using a-Weighted Valuations , 2000, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[73]  Pavel V. Sevastjanov Numerical methods for interval and fuzzy number comparison based on the probabilistic approach and Dempster-Shafer theory , 2007, Inf. Sci..

[74]  Zhiguo Liu,et al.  Up-regulation of VLDL receptor expression and its signaling pathway induced by VLDL and β-VLDL , 2009, Journal of Huazhong University of Science and Technology. Medical sciences = Hua zhong ke ji da xue xue bao. Yi xue Ying De wen ban = Huazhong keji daxue xuebao. Yixue Yingdewen ban.

[75]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets , 1986 .

[76]  Chris Cornelis,et al.  On the representation of intuitionistic fuzzy t-norms and t-conorms , 2004, IEEE Transactions on Fuzzy Systems.

[77]  Philippe Smets,et al.  The Combination of Evidence in the Transferable Belief Model , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[78]  Dug Hun Hong,et al.  Multicriteria fuzzy decision-making problems based on vague set theory , 2000, Fuzzy Sets Syst..

[79]  Humberto Bustince,et al.  Construction of fuzzy indices from fuzzy DI-subsethood measures: Application to the global comparison of images , 2007, Inf. Sci..

[80]  Satoko Titani,et al.  Intuitionistic fuzzy logic and intuitionistic fuzzy set theory , 1984, Journal of Symbolic Logic.

[81]  Janusz Kacprzyk,et al.  Applications of intuitionistic Fuzzy sets in decision making , 1998 .

[82]  Pavel V. Sevastjanov,et al.  Aggregation of aggregating modes in MCDM: Synthesis of Type 2 and Level 2 fuzzy sets , 2007 .

[83]  Zeshui Xu,et al.  Intuitionistic preference relations and their application in group decision making , 2007, Inf. Sci..

[84]  Z. S. Xu,et al.  Models for Multiple Attribute Decision Making with Intuitionistic Fuzzy Information , 2007, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[85]  James F. Baldwin,et al.  Evidential support logic programming , 1987 .

[86]  Lotfi A. Zadeh,et al.  A Simple View of the Dempster-Shafer Theory of Evidence and Its Implication for the Rule of Combination , 1985, AI Mag..

[87]  Malcolm J. Beynon,et al.  An expert system for multi-criteria decision making using Dempster Shafer theory , 2001, Expert Syst. Appl..

[88]  Jian-Bo Yang,et al.  A preference aggregation method through the estimation of utility intervals , 2005, Comput. Oper. Res..

[89]  T. Denœux Conjunctive and disjunctive combination of belief functions induced by nondistinct bodies of evidence , 2008 .

[90]  Arthur P. Dempster,et al.  Upper and Lower Probabilities Induced by a Multivalued Mapping , 1967, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[91]  Ranjit Biswas,et al.  Some operations on intuitionistic fuzzy sets , 2000, Fuzzy Sets Syst..

[92]  Humberto Bustince,et al.  Vague sets are intuitionistic fuzzy sets , 1996, Fuzzy Sets Syst..