Title: Rates and patterns of clonal oncogenic mutations in the normal human brain

Hospital; Departments of Pediatrics, Harvard Medical School, Boston, MA 02115, USA. 9 2 Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA. 10 3 Departments of Neurology, Harvard Medical School, Boston, MA 02115, USA. 11 4 Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA. 12 5 Bioinformatics & Integrative Genomics Program and Harvard/MIT MD-PHD Program, Harvard 13

[1]  C. Walsh,et al.  MIPP-Seq: ultra-sensitive rapid detection and validation of low-frequency mosaic mutations , 2021, BMC medical genomics.

[2]  M. Stratton,et al.  The mutational landscape of normal human endometrial epithelium , 2018, bioRxiv.

[3]  Andrew Menzies,et al.  Extensive heterogeneity in somatic mutation and selection in the human bladder , 2020, Science.

[4]  A. Oshlack,et al.  Detecting copy number alterations in RNA-Seq using SuperFreq , 2020, bioRxiv.

[5]  I. Tirosh,et al.  The Glioma Stem Cell Model in the Era of Single-Cell Genomics. , 2020, Cancer cell.

[6]  Ronen E. Mukamel,et al.  Large mosaic copy number variations confer autism risk , 2020, Nature Neuroscience.

[7]  Christopher D. Brown,et al.  The GTEx Consortium atlas of genetic regulatory effects across human tissues , 2019, Science.

[8]  Inigo Martincorena,et al.  Somatic mutations and clonal dynamics in healthy and cirrhotic human liver , 2019, Nature.

[9]  R. Guigó,et al.  The rate and spectrum of mosaic mutations during embryogenesis revealed by RNA sequencing of 49 tissues , 2019, Genome Medicine.

[10]  Hunter B. Fraser,et al.  The somatic mutation landscape of the human body , 2019, Genome Biology.

[11]  J. Grimsby,et al.  RNA sequence analysis reveals macroscopic somatic clonal expansion across normal tissues , 2019, Science.

[12]  D. Huntsman,et al.  Oncogenic Mutations in Histologically Normal Endometrium: The New Normal? , 2019, bioRxiv.

[13]  Ryan L. Collins,et al.  The mutational constraint spectrum quantified from variation in 141,456 humans , 2020, Nature.

[14]  J. Kleinman,et al.  Neurons with Complex Karyotypes Are Rare in Aged Human Neocortex. , 2019, Cell reports.

[15]  S. Tsunoda,et al.  Age-related remodelling of oesophageal epithelia by mutated cancer drivers , 2019, Nature.

[16]  Peter J. Campbell,et al.  Somatic mutant clones colonize the human esophagus with age , 2018, Science.

[17]  Gregory M. Cooper,et al.  CADD: predicting the deleteriousness of variants throughout the human genome , 2018, Nucleic Acids Res..

[18]  Yassen Assenov,et al.  Maftools: efficient and comprehensive analysis of somatic variants in cancer , 2018, Genome research.

[19]  S. Luo,et al.  High prevalence of focal and multi-focal somatic genetic variants in the human brain , 2018, Nature Communications.

[20]  M. Stratton,et al.  The landscape of somatic mutation in normal colorectal epithelial cells , 2018, Nature.

[21]  Ji-Yong Um,et al.  Human glioblastoma arises from subventricular zone cells with low-level driver mutations , 2018, Nature.

[22]  B. Deneen,et al.  A glial blueprint for gliomagenesis , 2018, Nature Reviews Neuroscience.

[23]  Andy Jinseok Lee,et al.  Mutalisk: a web-based somatic MUTation AnaLyIS toolKit for genomic, transcriptional and epigenomic signatures , 2018, Nucleic Acids Res..

[24]  B. Vogelstein,et al.  Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention , 2017, Science.

[25]  D. Scott,et al.  Molecular mechanisms of isocitrate dehydrogenase 1 (IDH1) mutations identified in tumors: The role of size and hydrophobicity at residue 132 on catalytic efficiency , 2017, The Journal of Biological Chemistry.

[26]  S. Herculano‐Houzel,et al.  The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting , 2016, The Journal of comparative neurology.

[27]  Woo-ping Ge,et al.  Local production of astrocytes in the cerebral cortex , 2016, Neuroscience.

[28]  M. Stratton,et al.  Clock-like mutational processes in human somatic cells , 2015, Nature Genetics.

[29]  Peter J. Park,et al.  Somatic mutation in single human neurons tracks developmental and transcriptional history , 2015, Science.

[30]  Xiaohui Xie,et al.  DANN: a deep learning approach for annotating the pathogenicity of genetic variants , 2015, Bioinform..

[31]  H. Zong,et al.  Cell of origin for malignant gliomas and its implication in therapeutic development. , 2015, Cold Spring Harbor perspectives in biology.

[32]  M. McCarthy,et al.  Age-related clonal hematopoiesis associated with adverse outcomes. , 2014, The New England journal of medicine.

[33]  Samuel Bernard,et al.  Dynamics of Oligodendrocyte Generation and Myelination in the Human Brain , 2014, Cell.

[34]  S. Gabriel,et al.  Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. , 2014, The New England journal of medicine.

[35]  O. Griffith,et al.  COSMIC (Catalogue of Somatic Mutations in Cancer) , 2014 .

[36]  Ira M. Hall,et al.  Mosaic Copy Number Variation in Human Neurons , 2013, Science.

[37]  Michael P. Schroeder,et al.  IntOGen-mutations identifies cancer drivers across tumor types , 2013, Nature Methods.

[38]  H. Wheeler,et al.  Expanding the spectrum of IDH1 mutations in gliomas , 2013, Modern Pathology.

[39]  R. Siebert,et al.  High‐resolution genomic analysis suggests the absence of recurrent genomic alterations other than SMARCB1 aberrations in atypical teratoid/rhabdoid tumors , 2013, Genes, chromosomes & cancer.

[40]  Giovanni Parmigiani,et al.  Half or more of the somatic mutations in cancers of self-renewing tissues originate prior to tumor initiation , 2013, Proceedings of the National Academy of Sciences.

[41]  R. Verhaak,et al.  Transformation by the R Enantiomer of 2-Hydroxyglutarate Linked to EglN Activation , 2012, Nature.

[42]  J. Akey Analysis of 2,440 human exomes highlights the evolution and functional impact of rare coding variation , 2011, Genome Biology.

[43]  L. Luo,et al.  Mosaic Analysis with Double Markers Reveals Tumor Cell of Origin in Glioma , 2011, Cell.

[44]  C. Sander,et al.  Predicting the functional impact of protein mutations: application to cancer genomics , 2011, Nucleic acids research.

[45]  M. Nagane,et al.  SHP-2/PTPN11 mediates gliomagenesis driven by PDGFRA and INK4A/ARF aberrations in mice and humans. , 2011, The Journal of clinical investigation.

[46]  Peter Canoll,et al.  Magnetic Resonance Imaging Characteristics of Glioblastoma Multiforme: Implications for Understanding Glioma Ontogeny , 2010, Neurosurgery.

[47]  Jana Marie Schwarz,et al.  MutationTaster evaluates disease-causing potential of sequence alterations , 2010, Nature Methods.

[48]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[49]  S. Baker,et al.  PTEN signaling in brain: neuropathology and tumorigenesis , 2008, Oncogene.

[50]  S. Batzoglou,et al.  Distribution and intensity of constraint in mammalian genomic sequence. , 2005, Genome research.

[51]  Ronald W. Davis,et al.  Multiplexed genotyping with sequence-tagged molecular inversion probes , 2003, Nature Biotechnology.

[52]  A. von Deimling,et al.  Subtyping of oligo‐astrocytic tumours by comparative genomic hybridization , 2001, The Journal of pathology.

[53]  A. Poustka,et al.  Comprehensive Allelotype and Genetic Analysis of 466 Human Nervous System Tumors , 2000, Journal of neuropathology and experimental neurology.

[54]  J. Tischfield,et al.  Loss of heterozygosity or: how I learned to stop worrying and love mitotic recombination. , 1997, American journal of human genetics.

[55]  Jill S Barnholtz-Sloan,et al.  CBTRUS Statistical Report: Primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014 , 2017, Neuro-oncology.

[56]  J. Uhm IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype , 2012 .