Dependence of Eu3+ photoluminescence properties on structural transformations in diopside-based glass-ceramics
暂无分享,去创建一个
Harsha Vardhan R. Maraka | J. Ferreira | S. Som | V. Jubera | S. Balaji | A. R. Allu | Subrata Das | I. Manek-Hönninger | Luis F. Santos | L. F. Santos | L. Santos
[1] W. Zhuang,et al. Structure, luminescence and thermal quenching properties of Eu doped Sr2−xBaxSi5N8 red phosphors , 2017 .
[2] J. R. Ommen,et al. Intriguing luminescence properties of (Ba, Sr) 3 Si 6 O 9 N 4 : Eu 2+ phosphors via modifying synthesis method and cation substitution , 2016 .
[3] A. Uedono,et al. Investigation on photoluminescence, electrical and positron lifetime of Eu3+ activated Gd2O3 phosphors , 2015 .
[4] M. Pandey,et al. Synthesis of strong red emitting Y2O3:Eu3+ phosphor by potential chemical routes: comparative investigations on the structural evolutions, photometric properties and Judd–Ofelt analysis , 2015 .
[5] G. C. Mather,et al. Influence of Strontium Oxide on Structural Transformations in Diopside-Based Glass-Ceramics Assessed by Diverse Structural Tools , 2015 .
[6] Mingmei Wu,et al. K2Ln(PO4)(WO4):Tb3+,Eu3+ (Ln = Y, Gd and Lu) phosphors: highly efficient pure red and tuneable emission for white light-emitting diodes , 2015 .
[7] Chung‐Hsin Lu,et al. Structural and luminescence properties of tunable white-emitting Sr0.5Ca0.5Al2O4:Eu2+, Dy3+ for UV-excited white-LEDs , 2014 .
[8] M. Peng,et al. Heavily Eu2O3-doped yttria-aluminoborate glasses for red photoconversion with a high quantum yield: luminescence quenching and statistics of cluster formation , 2014 .
[9] Mingsong Zhou,et al. Structure and photoluminescence characteristics of europium(III) doped in CaAl2Si2O8 phosphors , 2014 .
[10] Vijay Kumar,et al. Defect correlated fluorescent quenching and electron phonon coupling in the spectral transition of Eu3+ in CaTiO3 for red emission in display application , 2014 .
[11] S. Denbaars,et al. Consequences of Optimal Bond Valence on Structural Rigidity and Improved Luminescence Properties in SrxBa2–xSiO4:Eu2+ Orthosilicate Phosphors , 2014 .
[12] L. Dai,et al. Morphology controllable and highly luminescent monoclinic LaPO4:Eu3+ microspheres , 2014 .
[13] S. Niu,et al. Luminescence properties and energy transfer investigations of SrMgSi2O6:Ce,Tb phosphors , 2013 .
[14] A. Molla,et al. Thermal, Structural, and Enhanced Photoluminescence Properties of Eu3+‐doped Transparent Willemite Glass–Ceramic Nanocomposites , 2013 .
[15] L. Wondraczek,et al. Europium partitioning, luminescence re-absorption and quantum efficiency in (Sr,Ca) åkermanite–feldspar bi-phasic glass ceramics , 2013 .
[16] P. A. Tanner,et al. Some misconceptions concerning the electronic spectra of tri-positive europium and cerium. , 2013, Chemical Society reviews.
[17] Chung‐Hsin Lu,et al. Structural and Optical Properties of Tunable Warm‐White Light‐Emitting ZrO2:Dy3+–Eu3+ Nanocrystals , 2013 .
[18] J. Yu,et al. Synthesis and luminescent properties of novel red-emitting CaGd4O7: Eu3+ nanocrystalline phosphors , 2013 .
[19] S. Sharma,et al. Eu3+/Tb3+-codoped Y2O3 nanophosphors: Rietveld refinement, bandgap and photoluminescence optimization , 2012 .
[20] G. Prakash,et al. Influence of the annealing temperatures on the photoluminescence of KCaBO3:Eu3+ phosphor , 2012 .
[21] K. Marimuthu,et al. Concentration dependent Eu3+ doped boro-tellurite glasses—Structural and optical investigations , 2012 .
[22] M. Ma̧czka,et al. Polarized IR and Raman spectra of Ca{sub 2}MgSi{sub 2}O{sub 7}, Ca{sub 2}ZnSi{sub 2}O{sub 7} and Sr{sub 2}MgSi{sub 2}O{sub 7} single crystals: Temperature-dependent studies of commensurate to incommensurate and incommensurate to normal phase transitions , 2012 .
[23] Ru‐Shi Liu,et al. Controlling The Activator Site To Tune Europium Valence in Oxyfluoride Phosphors , 2012 .
[24] U. Pal,et al. Blue and red dual emission nanophosphor CaMgSi2O6:Eun+; crystal structure and electronic configuration , 2012 .
[25] Xiao Zhang,et al. Solution-processable white-light-emitting hybrid semiconductor bulk materials with high photoluminescence quantum efficiency. , 2012, Angewandte Chemie.
[26] A. Parchur,et al. Preparation and structure refinement of Eu3+ doped CaMoO4 nanoparticles. , 2011, Dalton transactions.
[27] Subrata Das,et al. Synthesis and optical characterization of strong red light emitting KLaF4:Eu3+ nanophosphors , 2011 .
[28] Hongquan Yu,et al. Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3:Eu3+ phosphor , 2011 .
[29] A. Patra,et al. Structural and photoluminescence properties of doped and core-shell LaPO4:Eu3+ nanocrystals , 2010 .
[30] B. C. Jamalaiah,et al. A study on fluorescence properties of Eu3+ ions in alkali lead tellurofluoroborate glasses , 2010 .
[31] H. Yamada,et al. Enhancement of Mechanoluminescence in CaAl2Si2O8 : Eu2 + by Partial Sr2 + Substitution for Ca2 + , 2010 .
[32] C. Liu,et al. Adjusting luminescence properties of SrxCa1−xAl2O4: Eu2+, Dy3+ phosphors by Sr/Ca ratio , 2009 .
[33] P. Dorenbos,et al. About red afterglow in Pr3+ doped titanate perovskites , 2009 .
[34] G. Ning,et al. Enhanced luminescent properties of long-persistent Sr2MgSi2O7:Eu2+, Dy3+ phosphor prepared by the co-precipitation method , 2008 .
[35] T. L. Mercier,et al. Fluorescence and phosphorescence properties of the low temperature forms of the MAl2Si2O8:Eu2+ (M=Ca, Sr, Ba) compounds , 2008 .
[36] Liya Zhou,et al. Synthesis and luminescent properties of BaGd2O4:Eu3+BaGd2O4:Eu3+ phosphor , 2007 .
[37] Yen-Hwei Chang,et al. Synthesis and luminescent properties of Ln3+ (Eu3+, Sm3+, Dy3+)-doped lanthanum aluminum germanate LaAlGe2O7 phosphors , 2007 .
[38] K. Driesen,et al. Eu3+ as a probe for rare-earth dopant site structure in nano-glass-ceramics , 2007 .
[39] X. Y. Chen,et al. The standard and anomalous crystal-field spectra of Eu3+ , 2005 .
[40] Animesh Jha,et al. The influence of F−-ion doping on the fluorescence (4I13/2 → 4I15/2) line shape broadening in Er3+-doped oxyfluoride silicate glasses , 2004 .
[41] T. Izumitani. The Fluorescence Properties of Eu3 + in Various Glasses and the Energy Transfer Between Eu3 + and Sm3 + , 1994 .
[42] P. D'arco,et al. Fluorescence spectra of Eu (super 3+) in synthetic polycrystalline anorthite; distribution of Eu (super 3+) in the structure , 1989 .
[43] M. Schuurmans,et al. On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f–4f transitions in rare‐earth ions , 1983 .
[44] J. Papike,et al. Structural and chemical variations in pyroxenes , 1981 .
[45] R. D. Shannon,et al. Effective ionic radii in oxides and fluorides , 1969 .
[46] John C. Slater,et al. Atomic Radii in Crystals , 1964 .
[47] B. Judd,et al. OPTICAL ABSORPTION INTENSITIES OF RARE-EARTH IONS , 1962 .
[48] G. S. Ofelt. Intensities of Crystal Spectra of Rare‐Earth Ions , 1962 .
[49] L. Pauling. THE PRINCIPLES DETERMINING THE STRUCTURE OF COMPLEX IONIC CRYSTALS , 1929 .
[50] Kyeongsoon Park,et al. Effect of host composition and Eu3+ concentration on the photoluminescence of aluminosilicate (Ca,Sr)2Al2SiO7:Eu3+ phosphors , 2017 .
[51] S. Sharma,et al. Excitation spectra and luminescence decay analysis of K+ compensated Dy3+ doped CaMoO4 phosphors , 2015 .
[52] H. Brito,et al. Luminescence and energy transfer of the europium (III) tungstate obtained via the Pechini method , 2003 .