Dependence of Eu3+ photoluminescence properties on structural transformations in diopside-based glass-ceramics

[1]  W. Zhuang,et al.  Structure, luminescence and thermal quenching properties of Eu doped Sr2−xBaxSi5N8 red phosphors , 2017 .

[2]  J. R. Ommen,et al.  Intriguing luminescence properties of (Ba, Sr) 3 Si 6 O 9 N 4 : Eu 2+ phosphors via modifying synthesis method and cation substitution , 2016 .

[3]  A. Uedono,et al.  Investigation on photoluminescence, electrical and positron lifetime of Eu3+ activated Gd2O3 phosphors , 2015 .

[4]  M. Pandey,et al.  Synthesis of strong red emitting Y2O3:Eu3+ phosphor by potential chemical routes: comparative investigations on the structural evolutions, photometric properties and Judd–Ofelt analysis , 2015 .

[5]  G. C. Mather,et al.  Influence of Strontium Oxide on Structural Transformations in Diopside-Based Glass-Ceramics Assessed by Diverse Structural Tools , 2015 .

[6]  Mingmei Wu,et al.  K2Ln(PO4)(WO4):Tb3+,Eu3+ (Ln = Y, Gd and Lu) phosphors: highly efficient pure red and tuneable emission for white light-emitting diodes , 2015 .

[7]  Chung‐Hsin Lu,et al.  Structural and luminescence properties of tunable white-emitting Sr0.5Ca0.5Al2O4:Eu2+, Dy3+ for UV-excited white-LEDs , 2014 .

[8]  M. Peng,et al.  Heavily Eu2O3-doped yttria-aluminoborate glasses for red photoconversion with a high quantum yield: luminescence quenching and statistics of cluster formation , 2014 .

[9]  Mingsong Zhou,et al.  Structure and photoluminescence characteristics of europium(III) doped in CaAl2Si2O8 phosphors , 2014 .

[10]  Vijay Kumar,et al.  Defect correlated fluorescent quenching and electron phonon coupling in the spectral transition of Eu3+ in CaTiO3 for red emission in display application , 2014 .

[11]  S. Denbaars,et al.  Consequences of Optimal Bond Valence on Structural Rigidity and Improved Luminescence Properties in SrxBa2–xSiO4:Eu2+ Orthosilicate Phosphors , 2014 .

[12]  L. Dai,et al.  Morphology controllable and highly luminescent monoclinic LaPO4:Eu3+ microspheres , 2014 .

[13]  S. Niu,et al.  Luminescence properties and energy transfer investigations of SrMgSi2O6:Ce,Tb phosphors , 2013 .

[14]  A. Molla,et al.  Thermal, Structural, and Enhanced Photoluminescence Properties of Eu3+‐doped Transparent Willemite Glass–Ceramic Nanocomposites , 2013 .

[15]  L. Wondraczek,et al.  Europium partitioning, luminescence re-absorption and quantum efficiency in (Sr,Ca) åkermanite–feldspar bi-phasic glass ceramics , 2013 .

[16]  P. A. Tanner,et al.  Some misconceptions concerning the electronic spectra of tri-positive europium and cerium. , 2013, Chemical Society reviews.

[17]  Chung‐Hsin Lu,et al.  Structural and Optical Properties of Tunable Warm‐White Light‐Emitting ZrO2:Dy3+–Eu3+ Nanocrystals , 2013 .

[18]  J. Yu,et al.  Synthesis and luminescent properties of novel red-emitting CaGd4O7: Eu3+ nanocrystalline phosphors , 2013 .

[19]  S. Sharma,et al.  Eu3+/Tb3+-codoped Y2O3 nanophosphors: Rietveld refinement, bandgap and photoluminescence optimization , 2012 .

[20]  G. Prakash,et al.  Influence of the annealing temperatures on the photoluminescence of KCaBO3:Eu3+ phosphor , 2012 .

[21]  K. Marimuthu,et al.  Concentration dependent Eu3+ doped boro-tellurite glasses—Structural and optical investigations , 2012 .

[22]  M. Ma̧czka,et al.  Polarized IR and Raman spectra of Ca{sub 2}MgSi{sub 2}O{sub 7}, Ca{sub 2}ZnSi{sub 2}O{sub 7} and Sr{sub 2}MgSi{sub 2}O{sub 7} single crystals: Temperature-dependent studies of commensurate to incommensurate and incommensurate to normal phase transitions , 2012 .

[23]  Ru‐Shi Liu,et al.  Controlling The Activator Site To Tune Europium Valence in Oxyfluoride Phosphors , 2012 .

[24]  U. Pal,et al.  Blue and red dual emission nanophosphor CaMgSi2O6:Eun+; crystal structure and electronic configuration , 2012 .

[25]  Xiao Zhang,et al.  Solution-processable white-light-emitting hybrid semiconductor bulk materials with high photoluminescence quantum efficiency. , 2012, Angewandte Chemie.

[26]  A. Parchur,et al.  Preparation and structure refinement of Eu3+ doped CaMoO4 nanoparticles. , 2011, Dalton transactions.

[27]  Subrata Das,et al.  Synthesis and optical characterization of strong red light emitting KLaF4:Eu3+ nanophosphors , 2011 .

[28]  Hongquan Yu,et al.  Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3:Eu3+ phosphor , 2011 .

[29]  A. Patra,et al.  Structural and photoluminescence properties of doped and core-shell LaPO4:Eu3+ nanocrystals , 2010 .

[30]  B. C. Jamalaiah,et al.  A study on fluorescence properties of Eu3+ ions in alkali lead tellurofluoroborate glasses , 2010 .

[31]  H. Yamada,et al.  Enhancement of Mechanoluminescence in CaAl2Si2O8 : Eu2 + by Partial Sr2 + Substitution for Ca2 + , 2010 .

[32]  C. Liu,et al.  Adjusting luminescence properties of SrxCa1−xAl2O4: Eu2+, Dy3+ phosphors by Sr/Ca ratio , 2009 .

[33]  P. Dorenbos,et al.  About red afterglow in Pr3+ doped titanate perovskites , 2009 .

[34]  G. Ning,et al.  Enhanced luminescent properties of long-persistent Sr2MgSi2O7:Eu2+, Dy3+ phosphor prepared by the co-precipitation method , 2008 .

[35]  T. L. Mercier,et al.  Fluorescence and phosphorescence properties of the low temperature forms of the MAl2Si2O8:Eu2+ (M=Ca, Sr, Ba) compounds , 2008 .

[36]  Liya Zhou,et al.  Synthesis and luminescent properties of BaGd2O4:Eu3+BaGd2O4:Eu3+ phosphor , 2007 .

[37]  Yen-Hwei Chang,et al.  Synthesis and luminescent properties of Ln3+ (Eu3+, Sm3+, Dy3+)-doped lanthanum aluminum germanate LaAlGe2O7 phosphors , 2007 .

[38]  K. Driesen,et al.  Eu3+ as a probe for rare-earth dopant site structure in nano-glass-ceramics , 2007 .

[39]  X. Y. Chen,et al.  The standard and anomalous crystal-field spectra of Eu3+ , 2005 .

[40]  Animesh Jha,et al.  The influence of F−-ion doping on the fluorescence (4I13/2 → 4I15/2) line shape broadening in Er3+-doped oxyfluoride silicate glasses , 2004 .

[41]  T. Izumitani The Fluorescence Properties of Eu3 + in Various Glasses and the Energy Transfer Between Eu3 + and Sm3 + , 1994 .

[42]  P. D'arco,et al.  Fluorescence spectra of Eu (super 3+) in synthetic polycrystalline anorthite; distribution of Eu (super 3+) in the structure , 1989 .

[43]  M. Schuurmans,et al.  On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f–4f transitions in rare‐earth ions , 1983 .

[44]  J. Papike,et al.  Structural and chemical variations in pyroxenes , 1981 .

[45]  R. D. Shannon,et al.  Effective ionic radii in oxides and fluorides , 1969 .

[46]  John C. Slater,et al.  Atomic Radii in Crystals , 1964 .

[47]  B. Judd,et al.  OPTICAL ABSORPTION INTENSITIES OF RARE-EARTH IONS , 1962 .

[48]  G. S. Ofelt Intensities of Crystal Spectra of Rare‐Earth Ions , 1962 .

[49]  L. Pauling THE PRINCIPLES DETERMINING THE STRUCTURE OF COMPLEX IONIC CRYSTALS , 1929 .

[50]  Kyeongsoon Park,et al.  Effect of host composition and Eu3+ concentration on the photoluminescence of aluminosilicate (Ca,Sr)2Al2SiO7:Eu3+ phosphors , 2017 .

[51]  S. Sharma,et al.  Excitation spectra and luminescence decay analysis of K+ compensated Dy3+ doped CaMoO4 phosphors , 2015 .

[52]  H. Brito,et al.  Luminescence and energy transfer of the europium (III) tungstate obtained via the Pechini method , 2003 .