The magic angle effect: A source of artifact, determinant of image contrast, and technique for imaging

This review provides a formalism for understanding magic angle effects in clinical studies. It involves consideration of the fiber‐to‐field angle for linear structures such as tendons, ligaments, and peripheral nerves, disc‐like and circular structures such as menisci and labra, as well as complex three‐dimensional structures. There may be one or more fiber types with different orientations within each of these tissues. The orientation of these fibers to B0 is crucial in determining their magic angle effect. Tissues may show a variety of appearances depending on their baseline T2, as well as the increase in T2 produced by the magic angle effect. The appearances are affected by TE, which affects both the general tissue signal level and the change in signal produced by the magic angle effect, fiber‐to‐slice orientation, and partial volume effects. Deliberate positioning of structures and tissues at particular orientations to B0 can be used to increase the signal from tissues such as tendons and ligaments and so allow them to be imaged with conventional sequences. The technique can also be used to produce contrast between tissues with fibers that have different orientations to B0. J. Magn. Reson. Imaging 2007. © 2007 Wiley‐Liss, Inc.

[1]  R. Pettigrew,et al.  Myocardial suppression in vivo by spin locking with composite pulses , 1996, Magnetic resonance in medicine.

[2]  V J Schmithorst,et al.  Spatial variation in cartilage T2 of the knee , 2001, Journal of magnetic resonance imaging : JMRI.

[3]  S Gary Firestein,et al.  Kelley's Textbook of Rheumatology , 2004 .

[4]  S. Trattnig,et al.  T2 mapping in the knee after microfracture at 3.0 T: correlation of global T2 values and clinical outcome - preliminary results. , 2008, Osteoarthritis and cartilage.

[5]  P A Bottomley,et al.  Noninvasive quantification of total sodium concentrations in acute reperfused myocardial infarction using 23Na MRI , 2001, Magnetic resonance in medicine.

[6]  J R Griffiths,et al.  Application of magnetic resonance neurography in the evaluation of patients with peripheral nerve pathology. , 1996, Journal of neurosurgery.

[7]  A. Maroudas,et al.  The correlation of fixed negative charge with glycosaminoglycan content of human articular cartilage. , 1969, Biochimica et biophysica acta.

[8]  J. V. D. Maarel Relaxation of spin 3/2 in a nonzero average electric field gradient , 1989 .

[9]  B. Hills,et al.  The influence of chemical and diffusive exchange on water proton transverse relaxation in plant tissues. , 1990, Magnetic resonance imaging.

[10]  J. B. Kneeland,et al.  T1ρ‐relaxation in articular cartilage: Effects of enzymatic degradation , 1997, Magnetic resonance in medicine.

[11]  K R Thulborn,et al.  Quantitative tissue sodium concentration mapping of the growth of focal cerebral tumors with sodium magnetic resonance imaging , 1999, Magnetic resonance in medicine.

[12]  Carl S Winalski,et al.  Magnetic Resonance Imaging of Focal Articular Cartilage Lesions , 2003, Topics in magnetic resonance imaging : TMRI.

[13]  S. Wimperis,et al.  Detection of the interaction of sodium ions with ordered structures in biological systems. Use of the Jeener-Broekaert experiment , 1993 .

[14]  Oliver Bieri,et al.  Magnetization transfer contrast and T2 mapping in the evaluation of cartilage repair tissue with 3T MRI , 2008, Journal of magnetic resonance imaging : JMRI.

[15]  D. Larkman,et al.  Magic angle imaging of the achilles tendon in patients with chronic tendonopathy. , 2003, Clinical radiology.

[16]  K. Uğurbil,et al.  Ultrahigh field magnetic resonance imaging and spectroscopy. , 2003, Magnetic resonance imaging.

[17]  S. Vasanawala,et al.  Controversies in protocol selection in the imaging of articular cartilage. , 2005, Seminars in musculoskeletal radiology.

[18]  J. Dunn,et al.  Micro-imaging of articular cartilage: T2, proton density, and the magic angle effect. , 1998, Academic radiology.

[19]  K. Prickett,et al.  The interleukin-1 receptor binds the human interleukin-1 alpha precursor but not the interleukin-1 beta precursor. , 1987, The Journal of biological chemistry.

[20]  R. Lenkinski,et al.  MR imaging of sodium in the human brain with a fast three-dimensional gradient-recalled-echo sequence at 4 T. , 2003, Academic radiology.

[21]  G. Navon Complete elimination of the extracellular 23Na NMR signal in triple quantum filtered spectra of rat hearts in the presence of shift reagents , 1993, Magnetic resonance in medicine.

[22]  Asla Pitkänen,et al.  Early Detection of Irreversible Cerebral Ischemia in the Rat Using Dispersion of the Magnetic Resonance Imaging Relaxation Time, T1ρ , 2000, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[23]  Mark Bydder,et al.  Magnetic Resonance: An Introduction to Ultrashort TE (UTE) Imaging , 2003, Journal of computer assisted tomography.

[24]  W. Ling,et al.  Selecting ordered environments in NMR of spin 3/2 nuclei via frequency-sweep pulses. , 2005, Journal of magnetic resonance.

[25]  W. Peh,et al.  The magic angle phenomenon in tendons: effect of varying the MR echo time. , 1998, The British journal of radiology.

[26]  H. Carr,et al.  The Principles of Nuclear Magnetism , 1961 .

[27]  R. Reddy,et al.  Multiple-quantum filters of spin-3/2 with pulses of arbitrary flip angle. , 1994, Journal of magnetic resonance. Series B.

[28]  P. Batchelor,et al.  International Society for Magnetic Resonance in Medicine , 1997 .

[29]  P. Boesiger,et al.  SENSE: Sensitivity encoding for fast MRI , 1999, Magnetic resonance in medicine.

[30]  D. Burstein,et al.  Determination of fixed charge density in cartilage using nuclear magnetic resonance , 1992, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[31]  W. Ling,et al.  Selective detection of ordered sodium signals via the central transition. , 2006, Journal of magnetic resonance (San Diego, Calif. 1997 : Print).

[32]  D. Burstein,et al.  Molecular (and functional) imaging of articular cartilage. , 2004, Journal of musculoskeletal & neuronal interactions.

[33]  H. Potter,et al.  T2 quantitation of articular cartilage at 1.5 T , 2003, Journal of magnetic resonance imaging : JMRI.

[34]  H K Genant,et al.  MR imaging of the arthritic knee: improved discrimination of cartilage, synovium, and effusion with pulsed saturation transfer and fat-suppressed T1-weighted sequences. , 1994, Radiology.

[35]  J. V. D. Maarel Thermal relaxation and coherence dynamics of spin 3/2. II. Strong radio-frequency field , 2003 .

[36]  R. Reddy,et al.  Detection of 17O by Proton T1ρ Dispersion Imaging , 1995 .

[37]  J. A. S. Smith,et al.  Nuclear quadrupole resonance spectroscopy , 1977, Nature.

[38]  B. Hills,et al.  The effects of proteins on the proton N.M.R. transverse relaxation times of water: I. Native bovine serum albumin , 1989 .

[39]  T. Mosher,et al.  Cartilage MRI T2 relaxation time mapping: overview and applications. , 2004, Seminars in musculoskeletal radiology.

[40]  G. Bydder,et al.  Magnetic resonance: new approaches to imaging of the musculoskeletal system. , 2003, Physiological measurement.

[41]  John S. Leigh,et al.  Selective detection of intracellular sodium by coherence-transfer NMR , 1987 .

[42]  T. Oegema,et al.  The effects of indirect blunt trauma on adult canine articular cartilage. , 1983, The Journal of bone and joint surgery. American volume.

[43]  Christian Beaulieu,et al.  In vivo sodium magnetic resonance imaging of the human brain using soft inversion recovery fluid attenuation , 2005, Magnetic resonance in medicine.

[44]  F. Maes,et al.  Magnetization transfer analysis of cartilage repair tissue: a preliminary study , 2006, Skeletal Radiology.

[45]  D. Walsh,et al.  Osteoarthritis, angiogenesis and inflammation. , 2005, Rheumatology.

[46]  Mark Bydder,et al.  Chemical Shift Artifact in Center-Out Radial Sampling: A Potential Pitfall in Clinical Diagnosis , 2007 .

[47]  W. Horton,et al.  Response of engineered cartilage tissue to biochemical agents as studied by proton magnetic resonance microscopy. , 2000, Arthritis and rheumatism.

[48]  T. Schleich,et al.  Sodium-23 and potassium-39 nuclear magnetic resonance relaxation in eye lens. Examples of quadrupole ion magnetic relaxation in a crowded protein environment. , 1992, Biophysical journal.

[49]  A. Borthakur,et al.  Sodium visibility and quantitation in intact bovine articular cartilage using high field (23)Na MRI and MRS. , 2000, Journal of magnetic resonance.

[50]  J. Sandy,et al.  Catabolism of aggrecan in cartilage explants. Identification of a major cleavage site within the interglobular domain. , 1991, The Journal of biological chemistry.

[51]  R. C. Hewitt,et al.  High Resolution NMR Probe Suitable for Use in a Superconducting Solenoid , 1965 .

[52]  Andrew J Wheaton,et al.  Application of the keyhole technique to T1ρ relaxation mapping , 2003, Journal of magnetic resonance imaging : JMRI.

[53]  A. Thomas,et al.  Incidental magnetization transfer contrast in fast spin‐echo imaging of cartilage , 1996, Journal of magnetic resonance imaging : JMRI.

[54]  Ray F. Lee,et al.  Quantification and imaging of myocardial sodium and creatine kinase metabolites , 2000, Magma: Magnetic Resonance Materials in Physics, Biology, and Medicine.

[55]  Ravi S. Menon,et al.  Long component time constant of 23Na T  *2 relaxation in healthy human brain , 2004, Magnetic resonance in medicine.

[56]  J. B. Kneeland,et al.  Sodium MRI of human articular cartilage in vivo , 1998, Magnetic resonance in medicine.

[57]  J. Pauly,et al.  Temperature mapping of frozen tissue using eddy current compensated half excitation RF pulses , 2001, Magnetic resonance in medicine.

[58]  Youssef Zaim Wadghiri,et al.  Macroscopic structure of articular cartilage of the tibial plateau: influence of a characteristic matrix architecture on MRI appearance. , 2004, AJR. American journal of roentgenology.

[59]  R. Richards,et al.  A general two-site solution for the chemical exchange produced dependence of T2 upon the carr-Purcell pulse separation , 1972 .

[60]  A. Boyde,et al.  Nanomechanical properties and mineral concentration in articular calcified cartilage and subchondral bone , 2003, Journal of anatomy.

[61]  S. Wehrli,et al.  Influence of Ischemic Preconditioning on Intracellular Sodium, pH, and Cellular Energy Status in Isolated Perfused Heart , 2002, Experimental biology and medicine.

[62]  H. Genant,et al.  "Magic-angle" phenomenon: a cause of increased signal in the normal lateral meniscus on short-TE MR images of the knee. , 1994, AJR. American journal of roentgenology.

[63]  D. Edwards,et al.  The modulation of matrix metalloproteinase and ADAM gene expression in human chondrocytes by interleukin-1 and oncostatin M: a time-course study using real-time quantitative reverse transcription-polymerase chain reaction. , 2002, Arthritis and rheumatism.

[64]  K. T. Scott,et al.  Protocol issues for delayed Gd(DTPA)2–‐enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage , 2001, Magnetic resonance in medicine.

[65]  A. Lamminen,et al.  T1ρ dispersion imaging of diseased muscle tissue , 1993 .

[66]  S. Marlovits,et al.  MR imaging of osteochondral grafts and autologous chondrocyte implantation , 2006, European Radiology.

[67]  S. Faber,et al.  A technique for 3D in vivo quantification of proton density and magnetization transfer coefficients of knee joint cartilage. , 2000, Osteoarthritis and cartilage.

[68]  Y. Ishibashi,et al.  Increased signal intensity in the normal glenoid labrum in MR imaging: diagnostic pitfalls caused by the magic-angle effect. , 2002, Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine.

[69]  Markus Rudin,et al.  In vivo qualitative assessments of articular cartilage in the rabbit knee with high‐resolution MRI at 3 T , 2003, Magnetic resonance in medicine.

[70]  M. Menzel,et al.  Steady-state diffusion imaging for MR in-vivo evaluation of reparative cartilage after matrix-associated autologous chondrocyte transplantation at 3 tesla--preliminary results. , 2008, European journal of radiology.

[71]  P. S. Hubbard Nonexponential Relaxation of Rotating Three‐Spin Systems in Molecules of a Liquid , 1970 .

[72]  G M Bydder,et al.  Magnetic resonance imaging of short T2 components in tissue. , 2003, Clinical radiology.

[73]  C. Hayes,et al.  The Magic Angle Effect in Musculoskeletal MR Imaging , 1996, Topics in magnetic resonance imaging : TMRI.

[74]  A. Borthakur,et al.  Assessment of Human Disc Degeneration and Proteoglycan Content Using T1&rgr;-weighted Magnetic Resonance Imaging , 2006, Spine.

[75]  A. Borthakur,et al.  Measurement of Dipolar Oscillations in Articular Cartilage using Spin-LockTechnique , 2004 .

[76]  P A Bottomley,et al.  Human skeletal muscle: sodium MR imaging and quantification-potential applications in exercise and disease. , 2000, Radiology.

[77]  E. Shapiro Multi -nuclear magnetic resonance methods for evaluating cartilage degeneration , 2001 .

[78]  Petros Martirosian,et al.  Systematic Variation of Off-Resonance Prepulses for Clinical Magnetization Transfer Contrast Imaging at 0.2, 1.5, and 3.0 Tesla , 2008, Investigative radiology.

[79]  Won C. Bae,et al.  Increased hydraulic conductance of human articular cartilage and subchondral bone plate with progression of osteoarthritis. , 2008, Arthritis and rheumatism.

[80]  R M Aspden,et al.  The electron microscope appearance of the subchondral bone plate in the human femoral head in osteoarthritis and osteoporosis , 1999, Journal of anatomy.

[81]  G.,et al.  On the Theory of Relaxation Processes * , 2022 .

[82]  H. Imhof,et al.  The role of relaxation times in monitoring proteoglycan depletion in articular cartilage , 1999, Journal of magnetic resonance imaging : JMRI.

[83]  Y. Xia,et al.  Relaxation anisotropy in cartilage by NMR microscopy (muMRI) at 14-microm resolution. , 1998, Magnetic resonance in medicine.

[84]  D. Laurent,et al.  In vivo MRI of cartilage pathogenesis in surgical models of osteoarthritis , 2006, Skeletal Radiology.

[85]  C. W. Mcllwraith,et al.  Effects of Calcified Cartilage on Healing of Chondral Defects Treated with Microfracture in Horses , 2006, The American journal of sports medicine.

[86]  J. Pauly,et al.  Isotropic diffusion‐weighted and spiral‐navigated interleaved EPI for routine imaging of acute stroke , 1997, Magnetic resonance in medicine.

[87]  J Silvennoinen,et al.  T2 relaxation reveals spatial collagen architecture in articular cartilage: A comparative quantitative MRI and polarized light microscopic study , 2001, Magnetic resonance in medicine.

[88]  Yang Xia,et al.  Relaxation anisotropy in cartilage by NMR microscopy (μMRI) at 14‐μm resolution , 1998 .

[89]  J. Frahm,et al.  Diffusion imaging of the human brain in vivo using high‐speed STEAM MRI , 1992, Magnetic resonance in medicine.

[90]  G. Navon,et al.  Sodium interaction with ordered structures in mammalian red blood cells detected by Na-23 double quantum NMR. , 1993, Biophysical journal.

[91]  Peter S. Belton,et al.  Proton N.M.R. studies of chemical and diffusive exchange in carbohydrate systems , 1989 .

[92]  C. A. Sholl,et al.  A relationship between nuclear spin relaxation in the laboratory and rotating frames for dipolar and quadrupolar relaxation , 1992 .

[93]  Alnawaz Rehemtulla,et al.  Sodium magnetic resonance imaging of chemotherapeutic response in a rat glioma , 2005, Magnetic resonance in medicine.

[94]  Rotating-frame spin—lattice relaxation measurements (T 1ρ) with weak spin-locking fields in the presence of homonuclear dipolar coupling , 2003 .

[95]  J. Hajnal,et al.  Magnetic resonance: magic angle imaging of the Achilles tendon , 2001, The Lancet.

[96]  M. Reiser,et al.  Magnetization transfer contrast (MTC) and MTC-subtraction: enhancement of cartilage lesions and intracartilaginous degeneration in vitro , 1994, Skeletal Radiology.

[97]  Deborah Burstein,et al.  New MRI Techniques for Imaging Cartilage , 2003, The Journal of bone and joint surgery. American volume.

[98]  B. Hall,et al.  Cartilage Molecular Aspects , 1991 .

[99]  M. Horn 23Na magnetic resonance imaging for the determination of myocardial viability: the status and the challenges. , 2004, Current vascular pharmacology.

[100]  Andrew J Wheaton,et al.  Proteoglycan loss in human knee cartilage: quantitation with sodium MR imaging--feasibility study. , 2004, Radiology.

[101]  A. Borthakur,et al.  In vivo triple quantum filtered twisted projection sodium MRI of human articular cartilage. , 1999, Journal of magnetic resonance.

[102]  H J Aronen,et al.  3D spin-lock imaging of human gliomas. , 1999, Magnetic resonance imaging.

[103]  J B Kneeland MRI probes biophysical structure of cartilage. , 1996, Diagnostic imaging.

[104]  Yi Liu,et al.  Change in knee cartilage T2 at MR imaging after running: a feasibility study. , 2005, Radiology.

[105]  G. Navon,et al.  Proton double‐quantum filtered MRI—A new method for imaging ordered tissues , 1998, Magnetic resonance in medicine.

[106]  Hisham A Alhadlaq,et al.  Modifications of orientational dependence of microscopic magnetic resonance imaging T2 anisotropy in compressed articular cartilage , 2005, Journal of magnetic resonance imaging : JMRI.

[107]  Frederik Maes,et al.  T2 mapping of human femorotibial cartilage with turbo mixed MR imaging at 1.5 T: feasibility. , 2004, Radiology.

[108]  Xiaojuan Li,et al.  In vivo 3T spiral imaging based multi‐slice T1ρ mapping of knee cartilage in osteoarthritis , 2005, Magnetic resonance in medicine.

[109]  M Vahlensieck,et al.  [Magnetization transfer contrast (MTC): optimizing off-resonance and on-resonance frequency MTC methods at 0.5 and 1.5 T]. , 2001, Biomedizinische Technik. Biomedical engineering.

[110]  C Boesch,et al.  Dipolar coupling and ordering effects observed in magnetic resonance spectra of skeletal muscle , 2001, NMR in biomedicine.

[111]  Jean-Pierre Ruaud,et al.  Effect of proteoglycan depletion on T2 mapping in rat patellar cartilage. , 2005, Radiology.

[112]  M. Robson,et al.  Magic angle effects in MR neurography. , 2004, AJNR. American journal of neuroradiology.

[113]  D. Felson,et al.  Epidemiology of hip and knee osteoarthritis. , 1988, Epidemiologic reviews.

[114]  R Reddy,et al.  Sodium NMR evaluation of articular cartilage degradation , 1999, Magnetic resonance in medicine.

[115]  J. S. Frye High-Resolution NMR of Solids , 1990 .

[116]  Arijitt Borthakur,et al.  Quantifying sodium in the human wrist in vivo by using MR imaging. , 2002, Radiology.

[117]  N. Adachi,et al.  Clinical significance of magnetic resonance imaging (MRI) for focal chondral lesions. , 1999, Magnetic resonance imaging.

[118]  S. Jimenez,et al.  Osteoarthritis cartilage histopathology: grading and staging. , 2006, Osteoarthritis and cartilage.

[119]  D. Livingston,et al.  Interleukin-1 beta converting enzyme inhibition blocks progression of type II collagen-induced arthritis in mice. , 1996, Cytokine.

[120]  G. Navon,et al.  A new method for suppressing the central transition in I=3/2 NMR spectra with a demonstration for 23Na in bovine articular cartilage. , 2003, Journal of magnetic resonance.

[121]  J. B. Kneeland,et al.  Effect of IL‐1β‐induced macromolecular depletion on residual quadrupolar interaction in articular cartilage , 2002, Journal of magnetic resonance imaging : JMRI.

[122]  H. S. Gutowsky,et al.  SPIN-ECHO STUDIES OF CHEMICAL EXCHANGE. II. CLOSED FORMULAS FOR TWO SITES. , 1965, The Journal of chemical physics.

[123]  B. Wilbrink,et al.  The effect of human interleukin 1 on proteoglycan metabolism in human and porcine cartilage explants. , 1990, The Journal of rheumatology.

[124]  G. Navon,et al.  Multiquantum filters and order in tissues , 2001, NMR in biomedicine.

[125]  Y. Itai,et al.  MR microscopy of the articular cartilage with a 1.0T permanent magnet portable MR system: preliminary results. , 2003, Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine.

[126]  M. Rudin,et al.  Quantitative and qualitative assessment of articular cartilage in the goat knee with magnetization transfer imaging. , 2001, Magnetic resonance imaging.

[127]  Haeberlen Ulrich,et al.  High resolution NMR in solids : selective averaging , 1976 .

[128]  J. B. Kneeland,et al.  Sodium magnetic resonance imaging of proteoglycan depletion in an in vivo model of osteoarthritis. , 2004, Academic radiology.

[129]  C D Kroenke,et al.  Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. , 2001, Methods in enzymology.

[130]  M. Kanowski,et al.  Visualization of pressure distribution within loaded joint cartilage by application of angle‐sensitive NMR microscopy , 2000, Magnetic resonance in medicine.

[131]  D. Burstein,et al.  Glycosaminoglycan in articular cartilage: in vivo assessment with delayed Gd(DTPA)(2-)-enhanced MR imaging. , 1997, Radiology.

[132]  Wolf Petersen,et al.  Collagenous fibril texture of the human knee joint menisci , 1998, Anatomy and Embryology.

[133]  C F Beaulieu,et al.  MR imaging of articular cartilage of the knee: new methods using ultrashort TEs. , 1998, AJR. American journal of roentgenology.

[134]  A. Borthakur Sodium NMR: An noninvasive probe for proteoglycan macromolecules , 2000 .

[135]  Felix Eckstein,et al.  Toward imaging biomarkers for osteoarthritis. , 2004, Clinical orthopaedics and related research.

[136]  R. Jordan,et al.  Rotating-frame relaxation rates of solvent molecules in solutions of paramagnetic ions undergoing solvent exchange , 1984 .

[137]  A. Borthakur,et al.  Correlation of T1ρ with fixed charge density in cartilage , 2004, Journal of magnetic resonance imaging : JMRI.

[138]  Seymour H. Koenig,et al.  Field-cycling relaxometry of protein solutions and tissue: Implications for MRI , 1990 .

[139]  Martha L. Gray,et al.  T2 and T1ρ MRI in articular cartilage systems , 2004 .

[140]  A. Maudsley,et al.  Biological aspects of sodium-23 imaging. , 1984, British medical bulletin.

[141]  A. Wheaton Quantitative spin -lock magnetic resonance imaging: Technical development and biomedical applications , 2005 .

[142]  G. Bodenhausen,et al.  Multiple‐quantum NMR spectroscopy of S=3/2 spins in isotropic phase: A new probe for multiexponential relaxation , 1986 .

[143]  A. Redfield Nuclear spin thermodynamics in the rotating frame. , 1969, Science.

[144]  S. Grinstein,et al.  Interleukin-1 beta induction of c-fos and collagenase expression in articular chondrocytes: involvement of reactive oxygen species. , 1998, Journal of cellular biochemistry.

[145]  C N Chen,et al.  The field dependence of NMR imaging. II. Arguments concerning an optimal field strength , 1986, Magnetic resonance in medicine.

[146]  K. Gersonde,et al.  T1ρ dispersion imaging and localized T1ρ dispersion relaxometry: Application in vivo to mouse adenocarcinoma , 1992 .

[147]  M. Langer,et al.  Median nerve compression can be detected by magnetic resonance imaging of the carpal tunnel. , 1997, Neurosurgery.

[148]  L W Jelinski,et al.  Self-diffusion monitors degraded cartilage. , 1995, Archives of biochemistry and biophysics.

[149]  M. Langer,et al.  MR imaging of the carpal tunnel. , 1997, European journal of radiology.

[150]  A. Wand,et al.  Water magnetic relaxation dispersion in biological systems: The contribution of proton exchange and implications for the noninvasive detection of cartilage degradation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[151]  G. Bodenhausen,et al.  Relaxation-induced violations of coherence transfer selection rules in nuclear magnetic resonance , 1987 .

[152]  J. Ra,et al.  In Vivo NMR Imaging of Sodium‐23 in the Human Head , 1985, Journal of computer assisted tomography.

[153]  R S Balaban,et al.  The design and test of a new volume coil for high field imaging , 1994, Magnetic resonance in medicine.

[154]  Ravinder R Regatte,et al.  Depth‐dependent proton magnetization transfer in articular cartilage , 2005, Journal of magnetic resonance imaging : JMRI.

[155]  P J Basser,et al.  Mechanical properties of the collagen network in human articular cartilage as measured by osmotic stress technique. , 1998, Archives of biochemistry and biophysics.

[156]  R. Reddy,et al.  Triple quantum sodium imaging of articular cartilage , 1997, Magnetic resonance in medicine.

[157]  F. Iannone,et al.  The pathophysiology of osteoarthritis , 2003, Aging clinical and experimental research.

[158]  V. Goldberg,et al.  Changes in proteoglycans of human osteoarthritic cartilage maintained in explant culture: implications for understanding repair in osteoarthritis. , 1988, Scandinavian journal of rheumatology. Supplement.

[159]  Takayuki Obata,et al.  Effect of multislice acquisition on T1 and T2 measurements of articular cartilage at 3T , 2007, Journal of magnetic resonance imaging : JMRI.

[160]  V J Schmithorst,et al.  MR imaging and T2 mapping of femoral cartilage: in vivo determination of the magic angle effect. , 2001, AJR. American journal of roentgenology.

[161]  S. Kohler,et al.  Sodium magnetic resonance imaging and chemical shift imaging , 1992 .

[162]  Peter S. Belton,et al.  The effects of proteins on the proton N.M.R. transverse relaxation time of water , 1989 .

[163]  P. Slagboom,et al.  Association of the interleukin-1 gene cluster with radiographic signs of osteoarthritis of the hip. , 2004, Arthritis and rheumatism.

[164]  J. Granot Sodium imaging of human body organs and extremities in vivo. , 1988, Radiology.

[165]  J. B. Kneeland,et al.  In vivo proton MR three-dimensional T1rho mapping of human articular cartilage: initial experience. , 2003, Radiology.

[166]  J. B. Kneeland,et al.  Human knee: in vivo T1(rho)-weighted MR imaging at 1.5 T--preliminary experience. , 2001, Radiology.

[167]  J. Hyde,et al.  Effect of tendon orientation on MR imaging signal intensity: a manifestation of the "magic angle" phenomenon. , 1991, Radiology.

[168]  Christian Glaser,et al.  New techniques for cartilage imaging: T2 relaxation time and diffusion-weighted MR imaging. , 2005, Radiologic clinics of North America.

[169]  I. V. Breuseghem Ultrastructural MR imaging techniques of the knee articular cartilage: problems for routine clinical application , 2004, European Radiology.

[170]  G. Liney,et al.  Quantification of T2 relaxation changes in articular cartilage with in situ mechanical loading of the knee , 2004, Journal of magnetic resonance imaging : JMRI.

[171]  R. Balaban,et al.  Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo , 1989, Magnetic resonance in medicine.

[172]  Y. Xia,et al.  Magic-Angle Effect in Magnetic Resonance Imaging of Articular Cartilage: A Review , 2000, Investigative radiology.

[173]  Garry E Gold,et al.  What's new in cartilage? , 2003, Radiographics : a review publication of the Radiological Society of North America, Inc.

[174]  M. Deibel,et al.  Recombinant human interleukin-1 alpha and recombinant human interleukin-1 beta stimulate cartilage matrix degradation and inhibit glycosaminoglycan synthesis. , 1989, Inflammation.

[175]  Sharmila Majumdar,et al.  T2 relaxation time measurements in osteoarthritis. , 2004, Magnetic resonance imaging.

[176]  B. Hills Multinuclear NMR studies of water in solutions of simple carbohydrates. , 1991 .

[177]  B. Schmitz,et al.  Three-dimensional true FISP for high-resolution imaging of the whole brain , 2003, European Radiology.

[178]  R. Wynn,et al.  Cloning and Characterization of ADAMTS11, an Aggrecanase from the ADAMTS Family* , 1999, The Journal of Biological Chemistry.

[179]  Siegfried Trattnig,et al.  Cartilage T2 assessment at 3-T MR imaging: in vivo differentiation of normal hyaline cartilage from reparative tissue after two cartilage repair procedures--initial experience. , 2008, Radiology.

[180]  J. B. Kneeland,et al.  Sensitivity of MRI to proteoglycan depletion in cartilage: comparison of sodium and proton MRI. , 2000, Osteoarthritis and cartilage.

[181]  Hisham A Alhadlaq,et al.  Orientational dependence of T2 relaxation in articular cartilage: A microscopic MRI (μMRI) study , 2002, Magnetic resonance in medicine.

[182]  Jiang Du,et al.  Quantitative characterization of the Achilles tendon in cadaveric specimens: T1 and T2* measurements using ultrashort-TE MRI at 3 T. , 2009, AJR. American journal of roentgenology.

[183]  W. Ling,et al.  Frequency-selective quadrupolar MRI contrast. , 2006, Solid state nuclear magnetic resonance.

[184]  R M Henkelman,et al.  Spin locking for magnetic resonance imaging with application to human breast , 1989, Magnetic resonance in medicine.

[185]  P. Primakoff,et al.  The ADAM gene family: surface proteins with adhesion and protease activity. , 2000, Trends in genetics : TIG.

[186]  K. Friedrich,et al.  Does joint alignment affect the T2 values of cartilage in patients with knee osteoarthritis? , 2010, European Radiology.

[187]  W. Rooney,et al.  The molecular environment of intracellular sodium: 23Na NMR relaxation , 1991, NMR in biomedicine.

[188]  M. Bronskill,et al.  Anisotropy of NMR properties of tissues , 1994, Magnetic resonance in medicine.

[189]  Douglas C. Noll,et al.  Deblurring for non‐2D fourier transform magnetic resonance imaging , 1992, Magnetic resonance in medicine.

[190]  Siegfried Trattnig,et al.  Initial results of in vivo high-resolution morphological and biochemical cartilage imaging of patients after matrix-associated autologous chondrocyte transplantation (MACT) of the ankle , 2009, Skeletal Radiology.

[191]  P. Styles,et al.  23Na NMR methods for selective observation of sodium ions in ordered environments , 1997 .

[192]  Andrew J Wheaton,et al.  Reduction of residual dipolar interaction in cartilage by spin‐lock technique , 2004, Magnetic resonance in medicine.

[193]  H J Aronen,et al.  T1ρ dispersion imaging of head and neck tumors: A comparison to spin lock and magnetization transfer techniques , 1997, Journal of magnetic resonance imaging : JMRI.

[194]  S. Neubauer,et al.  Optimization of ECG‐triggered 3D 23Na MRI of the human heart , 2001, Magnetic resonance in medicine.

[195]  W. Rooney,et al.  A comprehensive approach to the analysis and interpretation of the resonances of spins 3/2 from living systems , 1991, NMR in biomedicine.

[196]  J C Fontecilla-Camps,et al.  Crystal structure of human trypsin 1: unexpected phosphorylation of Tyr151. , 1995, Journal of molecular biology.

[197]  G. Bydder,et al.  Contrast-enhanced MRI of the menisci of the knee using ultrashort echo time (UTE) pulse sequences: imaging of the red and white zones. , 2004, The British journal of radiology.

[198]  J. Ralphs,et al.  Where tendons and ligaments meet bone: attachment sites (‘entheses’) in relation to exercise and/or mechanical load , 2006, Journal of anatomy.

[199]  J. V. D. Maarel Relaxation of spin S=3/2 in the doubly rotating tilted frame , 1989 .

[200]  J. Pekar,et al.  Detection of biexponential relaxation in sodium-23 facilitated by double-quantum filtering , 1986 .

[201]  Wilhelm Horger,et al.  Quantitative T2 Mapping of Matrix-Associated Autologous Chondrocyte Transplantation at 3 Tesla: An In Vivo Cross-Sectional Study , 2007, Investigative radiology.

[202]  Michael P Recht,et al.  MRI of articular cartilage: revisiting current status and future directions. , 2005, AJR. American journal of roentgenology.

[203]  Andrew J Wheaton,et al.  Detection of changes in articular cartilage proteoglycan by T1ρ magnetic resonance imaging , 2005, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[204]  V. Mlynárik,et al.  Transverse relaxation mechanisms in articular cartilage. , 2004, Journal of magnetic resonance.

[205]  Magnetization Transfer Contrast on Gradient Echo MR Imaging of the Temporomandibular Joint , 1995, Acta radiologica.

[206]  R S Balaban,et al.  Analysis of water‐macromolecule proton magnetization transfer in articular cartilage , 1993, Magnetic resonance in medicine.

[207]  Oleg Trott,et al.  R1rho relaxation outside of the fast-exchange limit. , 2002, Journal of magnetic resonance.

[208]  D. Longmore The principles of magnetic resonance. , 1989, British medical bulletin.

[209]  C C Glüer,et al.  Quantification of articular cartilage in the knee with pulsed saturation transfer subtraction and fat-suppressed MR imaging: optimization and validation. , 1994, Radiology.

[210]  T. Carpenter,et al.  MR protocols for imaging the guinea pig knee. , 1997, Magnetic resonance imaging.

[211]  J A Frank,et al.  Magnetization transfer contrast: MR imaging of the knee. , 1991, Radiology.

[212]  Miika T Nieminen,et al.  T2 of articular cartilage in the presence of Gd‐DTPA2− , 2004, Magnetic resonance in medicine.

[213]  D. Larkman,et al.  Contrast-enhanced magic-angle MR imaging of the Achilles tendon. , 2002, AJR. American journal of roentgenology.

[214]  G. Fullerton,et al.  Orientation of tendons in the magnetic field and its effect on T2 relaxation times. , 1985, Radiology.

[215]  Arijitt Borthakur,et al.  Proteoglycan depletion-induced changes in transverse relaxation maps of cartilage: comparison of T2 and T1rho. , 2002, Academic radiology.

[216]  R. Reddy,et al.  T(1rho) relaxation can assess longitudinal proteoglycan loss from articular cartilage in vitro. , 2002, Osteoarthritis and cartilage.

[217]  S K Hilal,et al.  In vivo NMR imaging of tissue sodium in the intact cat before and after acute cerebral stroke. , 1983, AJNR. American journal of neuroradiology.

[218]  R. Henkelman,et al.  High signal intensity in MR images of calcified brain tissue. , 1991, Radiology.

[219]  S. Neubauer,et al.  Evaluation of sodium T1 relaxation times in human heart , 2003, Journal of magnetic resonance imaging : JMRI.

[220]  Frederick Kelcz,et al.  Off‐resonance spin locking for MR imaging , 1994, Magnetic resonance in medicine.

[221]  Michael B. Smith,et al.  SAR and B1 field distributions in a heterogeneous human head model within a birdcage coil , 1998, Magnetic resonance in medicine.

[222]  S. Koskinen,et al.  Low-Field Strength Magnetization Transfer Contrast Imaging of the Patellar Cartilage , 1993, Acta radiologica.

[223]  J. B. Kneeland,et al.  Proteoglycan‐induced changes in T1ρ‐relaxation of articular cartilage at 4T , 2001, Magnetic resonance in medicine.

[224]  J. V. D. van der Maarel,et al.  Detection of sodium ions in anisotropic environments through spin‐lock NMR , 2002, Magnetic resonance in medicine.

[225]  V. Mlynárik,et al.  Proteoglycan depletion and magnetic resonance parameters of articular cartilage. , 2001, Archives of biochemistry and biophysics.

[226]  G. Navon,et al.  The formation of a second-rank tensor in 23Na double-quantum-filtered NMR as an indicator for order in a biological tissue , 1992 .

[227]  G. Marchal,et al.  Combined T1‐T2 mapping of human femoro‐tibial cartilage with turbo‐mixed imaging at 1.5T , 2005, Journal of magnetic resonance imaging : JMRI.

[228]  C. Handley,et al.  The effects of trypsin treatment on proteoglycan biosynthesis by bovine articular cartilage. , 1985, Biochemical Journal.

[229]  G. Navon,et al.  Analysis of double-quantum-filtered NMR spectra of 23Na in biological tissues. , 1994, Journal of magnetic resonance. Series B.

[230]  J. Dunn,et al.  MR imaging and T2 mapping of femoral cartilage. , 2002, AJR. American journal of roentgenology.

[231]  L. Lohmander,et al.  The structure of aggrecan fragments in human synovial fluid. Evidence for the involvement in osteoarthritis of a novel proteinase which cleaves the Glu 373-Ala 374 bond of the interglobular domain. , 1992, The Journal of clinical investigation.

[232]  P. Wolf,et al.  The effects of specific medical conditions on the functional limitations of elders in the Framingham Study. , 1994, American journal of public health.

[233]  R. Reddy,et al.  Detection of residual quadrupolar interaction in the human breast in vivo using sodium‐23 multiple quantum spectroscopy , 1999, Journal of Magnetic Resonance Imaging.

[234]  Van,et al.  Spatial variation of T2 in human articular cartilage. , 1997, Radiology.

[235]  A. Virta,et al.  T1ρ of protein solutions at very low fields: Dependence on molecular weight, concentration, and structure , 1997, Magnetic resonance in medicine.

[236]  H. Ma,et al.  Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis , 2005, Nature.

[237]  S Sone,et al.  Hyaline cartilage: in vivo and in vitro assessment with magnetization transfer imaging. , 1996, Radiology.

[238]  J. B. Kneeland,et al.  Sodium multiple quantum spectroscopy of articular cartilage: Effects of mechanical compression , 1998, Magnetic resonance in medicine.

[239]  R M Henkelman,et al.  Effects of compression and recovery on bovine articular cartilage: appearance on MR images. , 1996, Radiology.

[240]  V. Mlynárik,et al.  Investigation of laminar appearance of articular cartilage by means of magnetic resonance microscopy. , 1996, Magnetic resonance imaging.

[241]  D. Hoult,et al.  The field dependence of NMR imaging. I. Laboratory assessment of signal‐to‐noise ratio and power deposition , 1986, Magnetic resonance in medicine.

[242]  J. B. Kneeland,et al.  T1ρ MR Imaging of the Human Wrist in Vivo , 2003 .

[243]  D. Resnick,et al.  MR imaging of the major nerves about the elbow: cadaveric study examining the effect of flexion and extension of the elbow and pronation and supination of the forearm , 1998, Skeletal Radiology.

[244]  C. Beaulieu,et al.  Advanced MR imaging of the shoulder: dedicated cartilage techniques. , 2004, Magnetic resonance imaging clinics of North America.

[245]  M. Robson,et al.  Magnetic resonance imaging of the knee with ultrashort TE pulse sequences. , 2004, Magnetic resonance imaging.

[246]  D. Felson,et al.  The incidence and natural history of knee osteoarthritis in the elderly. The Framingham Osteoarthritis Study. , 1995, Arthritis and rheumatism.

[247]  A. Redfield,et al.  Nuclear Magnetic Resonance Saturation and Rotary Saturation in Solids , 1955 .

[248]  Mirela Ionescu,et al.  The pathobiology of focal lesion development in aging human articular cartilage and molecular matrix changes characteristic of osteoarthritis. , 2003, Arthritis and rheumatism.

[249]  B. Wickstead,et al.  Sodium ions in ordered environments in biological systems: analysis of 23Na NMR spectra. , 1999, Journal of magnetic resonance.

[250]  D. Woessner,et al.  Temporal characteristics of NMR signals from spin 3/2 nuclei of incompletely disordered systems. , 1998, Journal of magnetic resonance.

[251]  Costin Tanase,et al.  Loss of cell ion homeostasis and cell viability in the brain: what sodium MRI can tell us. , 2005, Current topics in developmental biology.

[252]  L. Southam,et al.  Finer linkage mapping of primary osteoarthritis susceptibility loci on chromosomes 4 and 16 in families with affected women. , 2004, Arthritis and rheumatism.

[253]  T. Bull Relaxation in the rotating frame in liquids , 1992 .

[254]  P. Jakob,et al.  23Na microscopy of the mouse heart in vivo using density-weighted chemical shift imaging , 2004, Magnetic Resonance Materials in Physics, Biology and Medicine.

[255]  R. Russell,et al.  In vitro activation of human chondrocytes and synoviocytes by a human interleukin-1-like factor. , 1984, Arthritis and rheumatism.

[256]  R. Wynn,et al.  Purification and cloning of aggrecanase-1: a member of the ADAMTS family of proteins. , 1999, Science.

[257]  R. Kimmich,et al.  Nuclear Magnetic Relaxation Spectroscopy in Solutions of Bovine Hemoglobin , 1971, Zeitschrift fur Naturforschung. Teil B, Chemie, Biochemie, Biophysik, Biologie und verwandte Gebiete.

[258]  C. Dinarello,et al.  The IL-1 family and inflammatory diseases. , 2002, Clinical and experimental rheumatology.

[259]  A. Fourie,et al.  ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro , 2005, Nature.

[260]  S. Majumdar,et al.  T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. , 2004, Radiology.

[261]  Georg N Duda,et al.  A New Device to Detect Early Cartilage Degeneration , 2004, The American journal of sports medicine.

[262]  D. Burstein,et al.  Gd‐DTPA2− as a measure of cartilage degradation , 1996, Magnetic resonance in medicine.

[263]  Ewald Moser,et al.  High-Resolution Diffusivity Imaging at 3.0 T for the Detection of Degenerative Changes: A Trypsin-Based Arthritis Model , 2003, Investigative radiology.

[264]  L. Peltonen,et al.  Genome scan for predisposing loci for distal interphalangeal joint osteoarthritis: evidence for a locus on 2q. , 1999, American journal of human genetics.

[265]  Arijitt Borthakur,et al.  Pulse sequence for multislice T1ρ‐weighted MRI , 2004 .

[266]  J. V. D. Maarel Thermal relaxation and coherence dynamics of spin 3/2. I. Static and fluctuating quadrupolar interactions in the multipole basis , 2003 .

[267]  J. B. Kneeland,et al.  A novel approach to observing articular cartilage deformation in vitro via magnetic resonance imaging , 1999, Journal of magnetic resonance imaging : JMRI.

[268]  Xiaojuan Li,et al.  Detection of posttraumatic cartilage injury using quantitative T1rho magnetic resonance imaging. A report of two cases with arthroscopic findings. , 2006, The Journal of bone and joint surgery. American volume.

[269]  H Engels,et al.  Incidental magnetization transfer contrast in standard multislice imaging. , 1990, Magnetic resonance imaging.

[270]  George Tomlinson,et al.  Cartilage T2 assessment: differentiation of normal hyaline cartilage and reparative tissue after arthroscopic cartilage repair in equine subjects. , 2006, Radiology.

[271]  J. B. Kneeland,et al.  T 1 rho-relaxation mapping of human femoral-tibial cartilage in vivo. , 2003, Journal of magnetic resonance imaging : JMRI.

[272]  Siegfried Trattnig,et al.  T2 and T2* mapping in patients after matrix-associated autologous chondrocyte transplantation: initial results on clinical use with 3.0-Tesla MRI , 2010, European Radiology.

[273]  R. Reddy,et al.  Detection of Residual Quadrupolar Interaction in Human Skeletal Muscle and Brain in vivo via Multiple Quantum Filtered Sodium NMR Spectra , 1995, Magnetic resonance in medicine.