18F-FLT    and 18F-FDOPA PET kinetics in recurrent brain tumors

[1]  J. Barnholtz-Sloan,et al.  CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. , 2012, Neuro-oncology.

[2]  A. Jemal,et al.  Cancer statistics, 2013 , 2013, CA: a cancer journal for clinicians.

[3]  N. Kawai,et al.  Correlation of 18F-FLT Uptake with Tumor Grade and Ki-67 Immunohistochemistry in Patients with Newly Diagnosed and Recurrent Gliomas , 2012, The Journal of Nuclear Medicine.

[4]  T. Cloughesy,et al.  Impact of 3,4-Dihydroxy-6-18F-Fluoro-l-Phenylalanine PET/CT on Managing Patients with Brain Tumors: The Referring Physician's Perspective , 2012, The Journal of Nuclear Medicine.

[5]  A. Shields PET Imaging of Tumor Growth: Not as Easy as It Looks , 2012, Clinical Cancer Research.

[6]  T. Cloughesy,et al.  3′-Deoxy-3′-18F-Fluorothymidine PET and MRI for Early Survival Predictions in Patients with Recurrent Malignant Glioma Treated with Bevacizumab , 2012, The Journal of Nuclear Medicine.

[7]  C. Kruchko,et al.  CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005-2009. , 2012, Neuro-oncology.

[8]  J. Mountz,et al.  Brain tumors. , 2012, Seminars in nuclear medicine.

[9]  Susan M. Chang,et al.  Neuroimaging: diagnosis and response assessment in glioblastoma. , 2012, Cancer journal.

[10]  A. Jemal,et al.  Cancer statistics, 2012 , 2012, CA: a cancer journal for clinicians.

[11]  J. Schwartz,et al.  The role of nucleoside/nucleotide transport and metabolism in the uptake and retention of 3'-fluoro-3'-deoxythymidine in human B-lymphoblast cells. , 2011, Nuclear medicine and biology.

[12]  Heinrich Lanfermann,et al.  Multimodality Assessment of Brain Tumors and Tumor Recurrence , 2011, The Journal of Nuclear Medicine.

[13]  Pat Zanzonico,et al.  Basic Sciences of Nuclear Medicine. , 2011, Medical physics.

[14]  T. Cloughesy,et al.  Discriminant Analysis of 18F-Fluorothymidine Kinetic Parameters to Predict Survival in Patients with Recurrent High-Grade Glioma , 2011, Clinical Cancer Research.

[15]  M. H. Ensom Concepts in Pharmacogenomics , 2010 .

[16]  Michael E Phelps,et al.  Correlation of 6-18F-Fluoro-l-Dopa PET Uptake with Proliferation and Tumor Grade in Newly Diagnosed and Recurrent Gliomas , 2010, The Journal of Nuclear Medicine.

[17]  T. Cloughesy,et al.  Impact of 18F-DOPA PET/CT imaging on the management of patients with brain tumors: The referring physician's perspective , 2010 .

[18]  G. Foltz New Hope for Battling Brain Cancer , 2010 .

[19]  Ralph Weissleder,et al.  Molecular Imaging: Principles and Practice , 2011, The Journal of Nuclear Medicine.

[20]  Susan Chang,et al.  Pseudoprogression and pseudoresponse: Challenges in brain tumor imaging , 2009, Current neurology and neuroscience reports.

[21]  Linda Kalof,et al.  Introduction to Social Statistics: The Logic of Statistical Reasoning , 2009 .

[22]  C. Sabin,et al.  Comprar Medical Statistics at a Glance | Colin Mumford | 9781405180511 | Wiley , 2009 .

[23]  J. Bading,et al.  Imaging of Cell Proliferation: Status and Prospects , 2008, Journal of Nuclear Medicine.

[24]  Sung-Cheng Huang,et al.  Role of Kinetic Modeling in Biomedical Imaging. , 2008, Journal of medical sciences.

[25]  Wei Chen,et al.  18F-FDOPA Kinetics in Brain Tumors , 2007, Journal of Nuclear Medicine.

[26]  Wei Chen Clinical Applications of PET in Brain Tumors* , 2007, Journal of Nuclear Medicine.

[27]  Sung-Cheng Huang,et al.  18F-fluorothymidine kinetics of malignant brain tumors , 2007, European Journal of Nuclear Medicine and Molecular Imaging.

[28]  Wei Chen,et al.  18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[29]  S. Reske,et al.  Is 3′-deoxy-3′-18F-fluorothymidine a better marker for tumour response than 18F-fluorodeoxyglucose? , 2006, European Journal of Nuclear Medicine and Molecular Imaging.

[30]  Marvin Bergsneider,et al.  Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. , 2005, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[31]  Mark Muzi,et al.  Kinetic analysis of 3'-deoxy-3'-fluorothymidine PET studies: validation studies in patients with lung cancer. , 2005, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[32]  M. Muzi,et al.  Metabolism of 3'-deoxy-3'-[F-18]fluorothymidine in proliferating A549 cells: validations for positron emission tomography. , 2004, Nuclear medicine and biology.

[33]  Peter J. Ell,et al.  Book review: Nuclear Medicine in Clinical Diagnosis and Treatment, 3rd edition , 2004 .

[34]  Michael E. Phelps,et al.  PET: Molecular Imaging and Its Biological Applications , 2004 .

[35]  D. Visvikis,et al.  Comparison of methodologies for the in vivo assessment of 18FLT utilisation in colorectal cancer , 2004, European Journal of Nuclear Medicine and Molecular Imaging.

[36]  Peter J. Ell,et al.  Nuclear medicine in clinical diagnosis and treatment , 2004 .

[37]  W. Burchert,et al.  3-O-Methyl-6-[18F]fluoro-l-DOPA and its evaluation in brain tumour imaging , 2003, European Journal of Nuclear Medicine and Molecular Imaging.

[38]  Magnus Dahlbom,et al.  Factor analysis in prostate cancer: delineation of organ structures and automatic generation of in- and output functions , 2002 .

[39]  Patrick Dupont,et al.  Maximum-likelihood expectation-maximization reconstruction of sinograms with arbitrary noise distribution using NEC-transformations , 2001, IEEE Transactions on Medical Imaging.

[40]  Sung-Cheng Huang,et al.  Anatomy of SUV , 2000 .

[41]  G. Gullberg,et al.  Factor analysis with a priori knowledge--application in dynamic cardiac SPECT. , 2000, Physics in medicine and biology.

[42]  Caroline Sabin,et al.  Medical Statistics at a Glance , 2000 .

[43]  M E Phelps,et al.  Positron emission tomography provides molecular imaging of biological processes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[44]  M. Phelps,et al.  PET: the merging of biology and imaging into molecular imaging. , 2000, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[45]  S C Huang,et al.  Anatomy of SUV. Standardized uptake value. , 2000, Nuclear medicine and biology.

[46]  Magnus Dahlbom,et al.  Factor analysis for delineation of organ structures, creation of in- and output functions, and standardization of multicenter kinetic modeling , 1999, Medical Imaging.

[47]  Otto Muzik,et al.  Imaging proliferation in vivo with [F-18]FLT and positron emission tomography , 1998, Nature Medicine.

[48]  B. Drayer,et al.  Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? , 1998, AJNR. American journal of neuroradiology.

[49]  A. Lammertsma,et al.  Simplified Reference Tissue Model for PET Receptor Studies , 1996, NeuroImage.

[50]  K Wienhard,et al.  F-Dopa as an amino acid tracer to detect brain tumors. , 1996, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[51]  D J Brooks,et al.  Comparison of Methods for Analysis of Clinical [11C]Raclopride Studies , 1996, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[52]  W. Olivero,et al.  The use of PET in evaluating patients with primary brain tumours: is it useful? , 1995, Journal of neurology, neurosurgery, and psychiatry.

[53]  H. Malcolm Hudson,et al.  Accelerated image reconstruction using ordered subsets of projection data , 1994, IEEE Trans. Medical Imaging.

[54]  N Satyamurthy,et al.  Regioselective radiofluorodestannylation with [18F]F2 and [18F]CH3COOF: a high yield synthesis of 6-[18F]Fluoro-L-dopa. , 1992, International journal of radiation applications and instrumentation. Part A, Applied radiation and isotopes.

[55]  Scott T. Grafton,et al.  Kinetics and Modeling of l-6-[18F]Fluoro-DOPA in Human Positron Emission Tomographic Studies , 1991, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[56]  J C Mazziotta,et al.  Modelling approach for separating blood time-activity curves in positron emission tomographic studies. , 1991, Physics in medicine and biology.

[57]  J. Mazziotta,et al.  Positron emission tomography: human brain function and biochemistry. , 1985, Science.

[58]  J. Mazziotta,et al.  Positron emission tomography and autoradiography: Principles and applications for the brain and heart , 1985 .

[59]  J C Mazziotta,et al.  Positron computed tomography for studies of myocardial and cerebral function. , 1983, Annals of internal medicine.

[60]  E. Hoffman,et al.  Noninvasive determination of local cerebral metabolic rate of glucose in man. , 1980, The American journal of physiology.

[61]  E. Hoffman,et al.  TOMOGRAPHIC MEASUREMENT OF LOCAL CEREBRAL GLUCOSE METABOLIC RATE IN HUMANS WITH (F‐18)2‐FLUORO-2‐DEOXY-D‐GLUCOSE: VALIDATION OF METHOD , 1980, Annals of neurology.