Stick Stippling for Joint 3D Visualization of Diffusion MRI Fiber Orientations and Density

We investigate a stick stippling approach for glyph-based visualization of neural fiber architecture derived from diffusion magnetic resonance imaging. The presence of subvoxel crossing fibers in the brain has prompted the development of advanced modeling techniques; however, there remains a need for improved visualization techniques to more clearly convey their complex structure. While tractography can illustrate large scale anatomy, visualization of diffusion models can provide a more complete picture of local anatomy without the known limitations of tracking. We identify challenges and evaluate techniques for visualizing multi-fiber models and identify benefits of a stick stippling technique relative to existing methods. We conducted experiments to compare these representations and evaluated them with in vivo diffusion MR datasets that vary in voxel resolution and anisotropy. We found that stick rendering as 3D tubes increased legibility of fiber orientation and that encoding fiber density by tube radius reduced clutter and reduced dependence on viewing orientation. Furthermore, we identified techniques to reduce the negative perceptual effects of voxel gridding through a jittering and resampling approach to produce a stippling effect. Looking forward, this approach provides a new way to explore diffusion MRI datasets that may aid in the visual analysis of white matter fiber architecture and microstructure. Our software implementation is available in the Quantitative Imaging Toolkit (QIT).

[1]  Anastasia Bezerianos,et al.  A Systematic Review of Experimental Studies on Data Glyphs , 2017, IEEE Transactions on Visualization and Computer Graphics.

[2]  Peter F. Neher,et al.  Tractography-based connectomes are dominated by false-positive connections , 2016, bioRxiv.

[3]  Max A. Viergever,et al.  Seeing More by Showing Less: Orientation-Dependent Transparency Rendering for Fiber Tractography Visualization , 2015, PloS one.

[4]  SONG ZHANG,et al.  Diffusion Tensor MRI Visualization , 2005, The Visualization Handbook.

[5]  David H. Laidlaw,et al.  Visualizing diffusion tensor images of the mouse spinal cord , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[6]  Chun-Hung Yeh,et al.  Resolving crossing fibres using constrained spherical deconvolution: Validation using diffusion-weighted imaging phantom data , 2008, NeuroImage.

[7]  David H. Laidlaw,et al.  Estimating Constrained Multi-fiber Diffusion MR Volumes by Orientation Clustering , 2013, MICCAI.

[8]  Bart M. ter Haar Romeny,et al.  Fast and sleek glyph rendering for interactive HARDI data exploration , 2009, 2009 IEEE Pacific Visualization Symposium.

[9]  Gerik Scheuermann,et al.  Visualizing DTI Parameters on Boundary Surfaces of White Matter Fiber Bundles , 2011 .

[10]  Alan Connelly,et al.  MRtrix: Diffusion tractography in crossing fiber regions , 2012, Int. J. Imaging Syst. Technol..

[11]  Peter F. Neher,et al.  Limits to anatomical accuracy of diffusion tractography using modern approaches , 2018, NeuroImage.

[12]  Hans-Heino Ehricke,et al.  Fiber Visualization with LIC Maps Using Multidirectional Anisotropic Glyph Samples , 2014, Int. J. Biomed. Imaging.

[13]  Daniel S. Margulies,et al.  Visualizing the human connectome , 2013, NeuroImage.

[14]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[15]  Yonggang Shi,et al.  Fiber Orientation and Compartment Parameter Estimation From Multi-Shell Diffusion Imaging , 2015, IEEE Transactions on Medical Imaging.

[16]  Steen Moeller,et al.  Advances in diffusion MRI acquisition and processing in the Human Connectome Project , 2013, NeuroImage.

[17]  David H. Laidlaw,et al.  Kernel regression estimation of fiber orientation mixtures in diffusion MRI , 2016, NeuroImage.

[18]  David H. Laidlaw,et al.  An Introduction to Visualization of Diffusion Tensor Imaging and Its Applications , 2006, Visualization and Processing of Tensor Fields.

[19]  M. Viergever,et al.  Multi-Fiber Tractography Visualizations for Diffusion MRI Data , 2013, PloS one.

[20]  Ryan P. Cabeen,et al.  A Computational Diffusion MRI Framework for Biomarker Discovery in a Rodent Model of Post-Traumatic Epileptogenesis , 2020, 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI).

[21]  Min Chen,et al.  Glyph-based Visualization: Foundations, Design Guidelines, Techniques and Applications , 2013, Eurographics.

[22]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[23]  V. Wedeen,et al.  Diffusion MRI of Complex Neural Architecture , 2003, Neuron.

[24]  Superquadric tensor glyphs , 2004 .

[25]  Paul M. Thompson,et al.  Visualization Tools for High Angular Resolution Diffusion Imaging , 2008, MICCAI.

[26]  Nico S. Gorbach,et al.  Fiber stippling: An illustrative rendering for probabilistic diffusion tractography , 2011, 2011 IEEE Symposium on Biological Data Visualization (BioVis)..

[27]  Daniel B Ennis,et al.  Visualization of tensor fields using superquadric glyphs , 2005, Magnetic resonance in medicine.

[28]  S. Palmer,et al.  A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure-ground organization. , 2012, Psychological bulletin.

[29]  Bernd Hamann,et al.  Visualizing White Matter Fiber Tracts with Optimally Fitted Curved Dissection Surfaces , 2010, VCBM.

[30]  Alan Connelly,et al.  Investigating white matter fibre density and morphology using fixel-based analysis , 2017, NeuroImage.

[31]  Mario Hlawitschka,et al.  Visualizing crossing probabilistic tracts , 2015, 2015 IEEE Scientific Visualization Conference (SciVis).

[32]  Maxime Descoteaux,et al.  Visualization of Diffusion Propagator and Multiple Parameter Diffusion Signal , 2015, Visualization and Processing of Higher Order Descriptors for Multi-Valued Data.

[33]  Sinisa Pajevic,et al.  Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: Application to white matter fiber tract mapping in the human brain , 1999, Magnetic resonance in medicine.

[34]  S Pajevic,et al.  Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: Application to white matter fiber tract mapping in the human brain , 1999, Magnetic resonance in medicine.

[35]  Carl-Fredrik Westin,et al.  Diffusion Tensor Visualization with Glyph Packing , 2006, IEEE Transactions on Visualization and Computer Graphics.