The Lifespan of a Class of Smooth Spherically Symmetric Solutions of the Compressible Euler Equations with Variable Entropy in Three Space Dimensions

We consider smooth three-dimensional spherically symmetric Eulerian flows of ideal polytropic gases with variable entropy, whose initial data are obtained by adding a small smooth perturbation with compact support to a constant state. Under a natural assumption, we obtain precise information on the asymptotic behavior of their lifespan when the size of the initial perturbation tends to 0. This is achieved by the construction and estimate of a suitable approximate flow.

[1]  A. Majda,et al.  Multi‐dimensional shock fronts for second order wave equations , 1987 .

[2]  L. Hörmander,et al.  The lifespan of classical solutions of non-linear hyperbolic equations , 1987 .

[3]  Alinhac Serge Une solution approchée en grand temps des équations d'Euler compressibles axisymétriques en dimension deux , 1992 .

[4]  D. Serre,et al.  Existence de solutions globales et régulières aux équations d'Euler pour un gaz parfait isentropique , 1997 .

[5]  Magali Grassin,et al.  GLOBAL SMOOTH SOLUTIONS TO EULER EQUATIONS FOR A PERFECT GAS , 1998 .

[6]  Serge Alinhac,et al.  Temps de vie des solutions régulières des équations d'Euler compressibles axisymétriques en dimension deux , 1993 .

[7]  T. Sideris The lifespan of smooth solutions to the three-dimensional compressible Euler equations and the incompressible limit , 1991 .

[8]  Thomas C. Sideris Nonresonance and global existence of prestressed nonlinear elastic waves , 2000 .

[9]  Fritz John,et al.  Existence for large times of strict solutions of nonlinear wave equations in three space dimensions for small initial data , 1987 .

[10]  M. Rammaha,et al.  Formation of singularities in compressible fluids in two-space dimensions , 1989 .

[11]  T. Sideris Delayed singularity formation in 2D compressible flow , 1997 .

[12]  Thomas C. Sideris,et al.  On almost global existence for nonrelativistic wave equations in 3D , 1996 .

[13]  A. Majda Compressible fluid flow and systems of conservation laws in several space variables , 1984 .

[14]  J. Craggs Applied Mathematical Sciences , 1973 .

[15]  Sergiu Klainerman,et al.  Remarks on the global sobolev inequalities in the minkowski space Rn+1 , 1987 .

[16]  J. Chemin Dynamique des gaz à masse totale finie , 1990 .

[17]  Thomas C. Sideris,et al.  Formation of singularities in three-dimensional compressible fluids , 1985 .

[18]  Huicheng Yin,et al.  The blowup of solutions for 3-D axisymmetric compressible Euler equations , 1999, Nagoya Mathematical Journal.