On the Metric Dimension of Cartesian Products of Graphs

A set of vertices $S$ resolves a graph $G$ if every vertex is uniquely determined by its vector of distances to the vertices in $S$. The metric dimension of $G$ is the minimum cardinality of a resolving set of $G$. This paper studies the metric dimension of cartesian products $G\,\square\,H$. We prove that the metric dimension of $G\,\square\,G$ is tied in a strong sense to the minimum order of a so-called doubly resolving set in $G$. Using bounds on the order of doubly resolving sets, we establish bounds on $G\,\square\,H$ for many examples of $G$ and $H$. One of our main results is a family of graphs $G$ with bounded metric dimension for which the metric dimension of $G\,\square\,G$ is unbounded.

[1]  Richard J. Nowakowski,et al.  Coin-Weighing Problems , 1995 .

[2]  Glenn G. Chappell,et al.  Bounds on the metric and partition dimensions of a graph , 2008, Ars Comb..

[3]  Noga Alon,et al.  The geometry of coin-weighing problems , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[4]  Wai Ho Mow Multiuser Coding Based on Detecting Matrices for Synchronous-CDMA Systems , 1997, IMACC.

[5]  W. H. Mills,et al.  Determination of a Subset from Certain Combinatorial Properties , 1966, Canadian Journal of Mathematics.

[6]  Ping Zhang,et al.  Connected Resolvability of Graphs , 2003, Australas. J Comb..

[7]  G. Chartrand,et al.  The theory and applications of resolvability in graphs: A survey , 2003 .

[8]  Thomas Erlebach,et al.  Network Discovery and Verification , 2005, WG.

[9]  Ortrud R. Oellermann,et al.  The metric dimension of Cayley digraphs , 2006, Discret. Math..

[10]  Peter Frank,et al.  Remarks on Detection Problems , 1967 .

[11]  Ortrud R. Oellermann,et al.  The partition dimension of Cayley digraphs , 2006 .

[12]  Ping Zhang,et al.  The metric dimension of unicyclic graphs , 2002 .

[13]  Nicholas Pippenger An Information-Theoretic Method in Combinatorial Theory , 1977, J. Comb. Theory, Ser. A.

[14]  Ping Zhang,et al.  On Connected Resolving Decompositions in Graphs , 2003 .

[15]  Reese T. Prosser,et al.  Note on metric dimension , 1970 .

[16]  D. Djoković Distance-preserving subgraphs of hypercubes , 1973 .

[17]  Paul Erdgs,et al.  ON TWO PROBLEMS OF INFORMATION THEORY bY PAUL ERDGS and ALFRJ~D RgNYI , 2001 .

[18]  Azriel Rosenfeld,et al.  Landmarks in Graphs , 1996, Discret. Appl. Math..

[19]  András Sebö,et al.  On Metric Generators of Graphs , 2004, Math. Oper. Res..

[20]  D. Knuth The Computer as Master Mind , 1977 .

[21]  Ronald D. Dutton,et al.  Resolving domination in graphs , 2003 .

[22]  James D. Currie,et al.  The metric dimension and metric independence of a graph , 2001 .

[23]  Wayne Goddard Static Mastermind , 2003 .

[24]  Vasek Chvátal,et al.  Mastermind , 1983, Comb..

[25]  Gary Chartrand,et al.  The forcing dimension of a graph , 2001 .

[26]  Wayne Goddard,et al.  Mastermind Revisited , 2004 .

[27]  Gary Chartrand,et al.  On k-dimensional graphs and their bases , 2003, Period. Math. Hung..

[28]  H. S. Shapiro,et al.  A Combinatory Detection Problem , 1963 .

[29]  Ping Zhang,et al.  Detour resolvability in graphs , 2004 .

[30]  Gary Chartrand,et al.  Resolvability in graphs and the metric dimension of a graph , 2000, Discret. Appl. Math..

[31]  Gary Chartrand,et al.  Resolvability and the upper dimension of graphs , 2000 .

[32]  Ping Zhang,et al.  Conditional resolvability in graphs: a survey , 2004, Int. J. Math. Math. Sci..

[33]  Beth Lazerick,et al.  Cut-the-Knot , 1998 .

[34]  J. Thorpe,et al.  The Mastermind game and the rigidity of the Hamming space , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[35]  Peter Winkler,et al.  Isometric embedding in products of complete graphs , 1984, Discret. Appl. Math..

[36]  David G. Cantor Determining a set from the cardinalities of its intersections with other sets , 1964 .

[37]  B. Lindström On a Combinatorial Problem in Number Theory , 1965, Canadian Mathematical Bulletin.