Three-dimensional topological insulator quantum dot for optically controlled quantum memory and quantum computing

We present the model of a quantum dot (QD) consisting of a spherical core-bulk heterostructure made of 3D topological insulator (TI) materials, such as PbTe/Pb$_{0.31}$Sn$_{0.69}$Te, with bound massless and helical Weyl states existing at the interface and being confined in all three dimensions. The number of bound states can be controlled by tuning the size of the QD and the magnitude of the core and bulk energy gaps, which determine the confining potential. We demonstrate that such bound Weyl states can be realized for QD sizes of few nanometers. We identify the spin locking and the Kramers pairs, both hallmarks of 3D TIs. In contrast to topologically trivial semiconductor QDs, the confined massless Weyl states in 3D TI QDs are localized at the interface of the QD and exhibit a mirror symmetry in the energy spectrum. We find strict optical selection rules satisfied by both interband and intraband transitions that depend on the polarization of electron-hole pairs and therefore give rise to the Faraday effect due to Pauli exclusion principle. We show that the semi-classical Faraday effect can be used to read out spin quantum memory. When a 3D TI QD is embedded inside a cavity, the single-photon Faraday rotation provides the possibility to implement optically mediated quantum teleportation and quantum information processing with 3D TI QDs, where the qubit is defined by either an electron-hole pair, a single electron spin, or a single hole spin in a 3D TI QD. Remarkably, the combination of inter- and intraband transition gives rise to a large dipole moment of up to 450 Debye. Therefore, the strong-coupling regime can be reached for a cavity quality factor of $Q\approx10^{4}$ in the infrared wavelength regime of around $10\:\mu$m.

[1]  Holger Bech Nielsen,et al.  The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal , 1983 .

[2]  Fu-Chun Zhang,et al.  Impurity effect on weak antilocalization in the topological insulator Bi2Te3. , 2010, Physical review letters.

[3]  Joel E Moore,et al.  The birth of topological insulators , 2010, Nature.

[4]  J. H. Müller,et al.  Quantum memories , 2010, 1003.1107.

[5]  M. N. Leuenberger Fault-tolerant quantum computing with coded spins using the conditional Faraday rotation in quantum dots , 2006 .

[6]  Z. K. Liu,et al.  Experimental Realization of a Three-Dimensional Topological Insulator , 2010 .

[7]  Khaled Karrai,et al.  Quantum-Dot Spin-State Preparation with Near-Unity Fidelity , 2006, Science.

[8]  D. Hsieh,et al.  A topological Dirac insulator in a quantum spin Hall phase , 2008, Nature.

[9]  Su-Yang Xu,et al.  Observation of a topological crystalline insulator phase and topological phase transition in Pb1−xSnxTe , 2012, Nature Communications.

[10]  H. Nielsen,et al.  Absence of neutrinos on a lattice: (I). Proof by homotopy theory , 1981 .

[11]  Alex Greilich,et al.  Ultrafast optical control of entanglement between two quantum-dot spins , 2011 .

[12]  M. S. Skolnick,et al.  Optical orientation and control of spin memory in individual InGaAs quantum dots , 2005 .

[13]  A. Badolato,et al.  Observation of Faraday rotation from a single confined spin , 2006, quant-ph/0610110.

[14]  L. J. Sham,et al.  Rabi oscillations of excitons in single quantum dots. , 2001, Physical review letters.

[15]  R. J. Schoelkopf,et al.  Observation of Berry's Phase in a Solid-State Qubit , 2007, Science.

[16]  Wang Yao,et al.  Quantum computing by optical control of electron spins , 2010, 1006.5544.

[17]  P. Petroff,et al.  A semiconductor exciton memory cell based on a single quantum nanostructure. , 2008, Nano letters.

[18]  W. Schoenfeld,et al.  Controlled On-Chip Single-Photon Transfer Using Photonic Crystal Coupled-Cavity Waveguides , 2011 .

[19]  E. J. Mele,et al.  Z2 topological order and the quantum spin Hall effect. , 2005, Physical review letters.

[20]  L. Fu,et al.  Superconducting proximity effect and majorana fermions at the surface of a topological insulator. , 2007, Physical review letters.

[21]  Dong Qian,et al.  Topological surface states protected from backscattering by chiral spin texture , 2009, Nature.

[22]  Topological insulator quantum dot with tunable barriers. , 2012, Nano letters.

[23]  C. Piermarocchi,et al.  Optical RKKY interaction between charged semiconductor quantum dots. , 2002, Physical Review Letters.

[24]  R. Cava,et al.  Observation of a large-gap topological-insulator class with a single Dirac cone on the surface , 2009 .

[25]  Pierre M. Petroff,et al.  Optical pumping of a single hole spin in a quantum dot , 2008, Nature.

[26]  Single photon Mach-Zehnder interferometer for quantum networks based on the Single Photon Faraday Effect: principle and applications , 2007, 0710.4327.

[27]  Dmytro Pesin,et al.  Spintronics and pseudospintronics in graphene and topological insulators. , 2012, Nature materials.

[28]  Dynamics of Entanglement between a Quantum Dot Spin Qubit and a Photon Qubit inside a Semiconductor High-Q Nanocavity , 2010 .

[29]  J. H. Davies,et al.  The physics of low-dimensional semiconductors , 1997 .

[30]  Liang Fu,et al.  Topological insulators with inversion symmetry , 2006, cond-mat/0611341.

[31]  Yi Cui,et al.  Topological insulator nanostructures , 2013 .

[32]  P. Zoller,et al.  Spin-based all-optical quantum computation with quantum dots: Understanding and suppressing decoherence , 2003, quant-ph/0304044.

[33]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[34]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[35]  W. Dang,et al.  Topological insulator nanostructures for near-infrared transparent flexible electrodes. , 2012, Nature chemistry.

[36]  Jairo Sinova,et al.  Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system. , 2005 .

[37]  V. L. Korenev,et al.  Optical Signatures of Coupled Quantum Dots , 2006, Science.

[38]  H. Yusheng,et al.  The electronic band structure of Pb1-xSnxTe alloys. III. Implications for the Fermi surface of SnTe , 1985 .

[39]  A. Shabaev,et al.  Mode Locking of Electron Spin Coherences in Singly Charged Quantum Dots , 2006, Science.

[40]  Dieter Schuh,et al.  Optically programmable electron spin memory using semiconductor quantum dots , 2004, Nature.

[41]  Desheng Kong,et al.  Opportunities in chemistry and materials science for topological insulators and their nanostructures. , 2011, Nature chemistry.

[42]  D. D. Awschalom,et al.  Quantum information processing using quantum dot spins and cavity QED , 1999 .

[43]  L. Fu,et al.  Surface states and topological invariants in three-dimensional topological insulators: Application to Bi 1 − x Sb x , 2008 .

[44]  M. Marder Condensed Matter Physics: Marder/Condensed , 2010 .

[45]  J. Chu,et al.  STM imaging of electronic waves on the surface of Bi2Te3: topologically protected surface states and hexagonal warping effects. , 2009, Physical review letters.

[46]  F. Meier,et al.  A tunable topological insulator in the spin helical Dirac transport regime , 2009, Nature.

[47]  V. Kulakovskii,et al.  Strong coupling in a single quantum dot–semiconductor microcavity system , 2004, Nature.

[48]  C.-Y. Lu,et al.  Observation of spin-dependent quantum jumps via quantum dot resonance fluorescence , 2010, Nature.

[49]  J. L. O'Brien,et al.  Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon , 2007, 0708.2019.

[50]  Lucio Robledo,et al.  Conditional Dynamics of Interacting Quantum Dots , 2008, Science.

[51]  C. Kane,et al.  Observation of Unconventional Quantum Spin Textures in Topological Insulators , 2009, Science.

[52]  H. Nielsen,et al.  A no-go theorem for regularizing chiral fermions , 1981 .

[53]  W. Schoenfeld,et al.  Optical Switching Based on the Conditional Faraday Effect With Electron Spins in Quantum Dots , 2009, IEEE Journal of Quantum Electronics.

[54]  D. Awschalom,et al.  Teleportation of electronic many-qubit states encoded in the electron spin of quantum dots via single photons. , 2005, Physical review letters.

[55]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[56]  V. M. Edelstein Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems , 1990 .

[57]  L A Coldren,et al.  Nondestructive Optical Measurements of a Single Electron Spin in a Quantum Dot , 2006, Science.

[58]  Pierre M. Petroff,et al.  A Coherent Single-Hole Spin in a Semiconductor , 2009, Science.

[59]  Dung-Hai Lee Surface states of topological insulators: the Dirac fermion in curved two-dimensional spaces. , 2009, Physical review letters.

[60]  H. Nielsen,et al.  Absence of neutrinos on a lattice: (II). Intuitive topological proof , 1981 .

[61]  Xiao-Liang Qi,et al.  Aharonov-Bohm interference in topological insulator nanoribbons. , 2009, Nature materials.