MicroRNA expression profiling and target genes study in congenital microtia.

[1]  Haitao Li,et al.  MicroRNA array analysis of microRNAs related to systemic scleroderma , 2012, Rheumatology International.

[2]  M. Cunningham,et al.  Microtia: Epidemiology and genetics , 2012, American journal of medical genetics. Part A.

[3]  A. Czeizel,et al.  Maternal diseases and risk of isolated ear abnormalities in their children. , 2011, Central European journal of public health.

[4]  Pierpaolo Mastroiacovo,et al.  Microtia-anotia: a global review of prevalence rates. , 2011, Birth defects research. Part A, Clinical and molecular teratology.

[5]  R. Rosti,et al.  No association between DNA repair gene (XPD, XRCC1, and XRCC4) polymorphisms and nonsyndromic microtia in Turkish patients. , 2011, Plastic and reconstructive surgery.

[6]  K. Shrey,et al.  Micro RNAs: tiny sequences with enormous potential. , 2011, Biochemical and biophysical research communications.

[7]  B. Pan,et al.  Mutational analysis of PACT gene in Chinese patients with microtia , 2011, American journal of medical genetics. Part A.

[8]  B. Morrow,et al.  Mutational analysis of HOXA2 and SIX2 in a Bronx population with isolated microtia. , 2010, International journal of pediatric otorhinolaryngology.

[9]  Stefano Piccolo,et al.  MicroRNA control of signal transduction , 2010, Nature Reviews Molecular Cell Biology.

[10]  W. Yin,et al.  Pedigree and Genetic Study of a Bilateral Congenital Microtia Family , 2010, Plastic and reconstructive surgery.

[11]  Jinfang Wu,et al.  Epidemiological analysis of microtia: a retrospective study in 345 patients in China. , 2010, International journal of pediatric otorhinolaryngology.

[12]  B. Pan,et al.  [Study of methylation of promoter of EYA1 gene in microtia]. , 2009, Zhonghua zheng xing wai ke za zhi = Zhonghua zhengxing waike zazhi = Chinese journal of plastic surgery.

[13]  Qingguo Zhang,et al.  Environmental and Genetic Factors Associated with Congenital Microtia: A Case-Control Study in Jiangsu, China, 2004 to 2007 , 2009, Plastic and reconstructive surgery.

[14]  Yibing Yin,et al.  Microarray profile of micro‐ribonucleic acid in tumor tissue from cervical squamous cell carcinoma without human papillomavirus , 2009, The journal of obstetrics and gynaecology research.

[15]  J. Seidman,et al.  A classic twin study of external ear malformations, including microtia. , 2009, The New England journal of medicine.

[16]  G. Peters,et al.  The double-stranded RNA-binding protein, PACT, is required for postnatal anterior pituitary proliferation , 2009, Proceedings of the National Academy of Sciences.

[17]  X. Chen,et al.  Role of miR-143 targeting KRAS in colorectal tumorigenesis , 2009, Oncogene.

[18]  Duan Ma,et al.  The cell growth suppressor, mir-126, targets IRS-1. , 2008, Biochemical and biophysical research communications.

[19]  Haoming Zhang,et al.  miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes , 2008, Nucleic acids research.

[20]  M. Tekin,et al.  Homozygous FGF3 mutations result in congenital deafness with inner ear agenesis, microtia, and microdontia , 2008, Clinical genetics.

[21]  S. Amladi,et al.  Goldenhar syndrome with unusual features. , 2008, Indian journal of dermatology, venereology and leprology.

[22]  M. Farhadi,et al.  A mutation in HOXA2 is responsible for autosomal-recessive microtia in an Iranian family. , 2008, American journal of human genetics.

[23]  A. James,et al.  Bifid tongue: A rare feature associated with infants of diabetic mother syndrome , 2007, American journal of medical genetics. Part A.

[24]  Martha L Bulyk,et al.  Microarray Analyses of Newborn Mouse Ovaries Lacking Nobox1 , 2007, Biology of reproduction.

[25]  A. Feinberg Phenotypic plasticity and the epigenetics of human disease , 2007, Nature.

[26]  R. Kosaki,et al.  Wide phenotypic variations within a family with SALL1 mutations: Isolated external ear abnormalities to Goldenhar syndrome , 2007, American journal of medical genetics. Part A.

[27]  K. Hirose,et al.  A role of the double-stranded RNA-binding protein PACT in mouse ear development and hearing. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[28]  D. Wieczorek,et al.  Histone acetylation dependent allelic expression imbalance of BAPX1 in patients with the oculo-auriculo-vertebral spectrum. , 2006, Human molecular genetics.

[29]  H. Zhuang,et al.  [Case control study on risk factors of congenital microtia]. , 2006, Zhonghua er bi yan hou tou jing wai ke za zhi = Chinese journal of otorhinolaryngology head and neck surgery.

[30]  E. Cho,et al.  Odd-skipped related 1 (Odd 1) is an essential regulator of heart and urogenital development. , 2005, Developmental biology.

[31]  S. O’Gorman Second branchial arch lineages of the middle ear of wild‐type and Hoxa2 mutant mice , 2005, Developmental dynamics : an official publication of the American Association of Anatomists.

[32]  T. Roscioli,et al.  Pallister–Hall syndrome: Unreported skeletal features of a GLI3 mutation , 2005, American journal of medical genetics. Part A.

[33]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[34]  S. Ishimoto,et al.  Correlation between microtia and temporal bone malformation evaluated using grading systems. , 2005, Archives of otolaryngology--head & neck surgery.

[35]  Anton J. Enright,et al.  Human MicroRNA Targets , 2004, PLoS biology.

[36]  M. Werler,et al.  Vasoactive exposures, vascular events, and hemifacial microsomia. , 2004, Birth defects research. Clinical and molecular teratology.

[37]  A. Hatzigeorgiou,et al.  A combined computational-experimental approach predicts human microRNA targets. , 2004, Genes & development.

[38]  J. M. Rogers,et al.  Effects of gestational exposure to ethane dimethanesulfonate in CD-1 mice: microtia and preliminary hearing tests. , 2003, Birth defects research. Part B, Developmental and reproductive toxicology.

[39]  K. Livak,et al.  Real time quantitative PCR. , 1996, Genome research.

[40]  S. Potter,et al.  Dominant mutation of the murine Hox-2.2 gene results in developmental abnormalities. , 1992, The Journal of experimental zoology.