Postnatal development of pre- and postsynaptic GABAB-mediated inhibitions in the CA3 hippocampal region of the rat.
暂无分享,去创建一个
1. Intracellular recordings were made from adult and neonatal rat hippocampal slices to study the postnatal development of GABAB-mediated inhibition in CA3 pyramidal neurons. 2. In the presence of glutamatergic receptor antagonists, direct electrical stimulation of the interneurons induced a biphasic GABAA- and GABAB-mediated inhibitory postsynaptic potential in adult [postnatal day (P) 30-P40] and young (P6-P8) CA3 pyramidal neurons. In contrast, in pups (P0-P3), electrical stimulation only induced a bicuculline-sensitive depolarizing GABAA synaptic potential. 3. The outward postsynaptic currents generated by bath-applications of baclofen (30 microM, 30 s) at P3 (78 +/- 60 pA, mean +/- SE) were 4 to 5 times smaller than those evoked between P6 (329 +/- 32 pA) and P30 (412 +/- 44 pA). At P0, baclofen failed to induce a postsynaptic current. 4. The outward currents generated by serotonin (50 microM, 30 s) and the A1 receptor agonist N-cyclopentyladenosine (40 microM, 30 s) ranged between 0 and 50 pA at P3 and between 200 and 400 pA at P6 and P30 (holding potential = -60 +/- 2 mV). 5. In the presence of potassium channel blockers, the amplitude of calcium current elicited by a depolarizing voltage step command (1 s) from a holding potential of -60 mV to a test potential of 0 mV was 2 +/- 0.15 nA at P6 (n = 9) and 0.73 +/- 0.14 nA at P3 (n = 8). Baclofen reversibly reduced the amplitude of calcium currents in young rats but not in pups. 6. Baclofen reversibly reduced the amplitude of the evoked GABAA-mediated and glutamatergic synaptic events at all developmental stages. These effects were dose dependent and antagonized by P-alpha 3-aminopropyl-P-diethoxymethyl-phosphinic acid (CGP) 35348 (500 microM). 7. We conclude that postsynaptic GABAB-mediated inhibition is absent or minimal during the first postnatal days in the CA3 region. In contrast, presynaptic GABAB inhibition is present at birth. We discuss the mechanisms and physiological consequences of these observations.