Practical representations of incomplete probabilistic knowledge

The compact representation of incomplete probabilistic knowledge which can be encountered in risk evaluation problems, for instance in environmental studies is considered. Various kinds of knowledge are considered such as expert opinions about characteristics of distributions or poor statistical information. The approach is based on probability families encoded by possibility distributions and belief functions. In each case, a technique for representing the available imprecise probabilistic information faithfully is proposed, using different uncertainty frameworks, such as possibility theory, probability theory, and belief functions, etc. Moreover the use of probability-possibility transformations enables confidence intervals to be encompassed by cuts of possibility distributions, thus making the representation stronger. The respective appropriateness of pairs of cumulative distributions, continuous possibility distributions or discrete random sets for representing information about the mean value, the mode, the median and other fractiles of ill-known probability distributions is discussed in detail.

[1]  I. Bogardi,et al.  Numerical solute transport simulation using fuzzy sets approach , 1997 .

[2]  Didier Dubois,et al.  Representing partial ignorance , 1996, IEEE Trans. Syst. Man Cybern. Part A.

[3]  Gert de Cooman,et al.  Supremum Preserving Upper Probabilities , 1999, Inf. Sci..

[4]  María Angeles Gil,et al.  The fuzzy approach to statistical analysis , 2006, Comput. Stat. Data Anal..

[5]  D. Dubois,et al.  The mean value of a fuzzy number , 1987 .

[6]  Didier Dubois,et al.  Hybrid approach for addressing uncertainty in risk assessments , 2003 .

[7]  Didier Dubois,et al.  Consonant approximations of belief functions , 1990, Int. J. Approx. Reason..

[8]  Maurice G. Kendall,et al.  The advanced theory of statistics , 1945 .

[9]  W. Feller On the Kolmogorov–Smirnov Limit Theorems for Empirical Distributions , 1948 .

[10]  Jon C. Helton,et al.  An exploration of alternative approaches to the representation of uncertainty in model predictions , 2003, Reliab. Eng. Syst. Saf..

[11]  L. H. Miller Table of Percentage Points of Kolmogorov Statistics , 1956 .

[12]  Axel Bronstert,et al.  1-, 2- and 3-dimensional modeling of water movement in the unsaturated soil matrix using a fuzzy approach , 1995 .

[13]  M. Roubens,et al.  Fuzzy logic : state of the art , 1993 .

[14]  Alessandro Saffiotti,et al.  The Transferable Belief Model , 1991, ECSQARU.

[15]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[16]  Elmar Kriegler,et al.  Utilizing belief functions for the estimation of future climate change , 2005, Int. J. Approx. Reason..

[17]  Scott Ferson,et al.  Whereof one cannot speak: When input distributions are unknown , 1998 .

[18]  Jean-Yves Jaffray Bayesian Updating and Belief Functions , 2008, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[19]  Hung T. Nguyen,et al.  Possibility Theory, Probability and Fuzzy Sets Misunderstandings, Bridges and Gaps , 2000 .

[20]  Didier Dubois,et al.  Possibility Theory - An Approach to Computerized Processing of Uncertainty , 1988 .

[21]  Robert C. Williamson,et al.  Probabilistic arithmetic. I. Numerical methods for calculating convolutions and dependency bounds , 1990, Int. J. Approx. Reason..

[22]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[23]  Henryk Gzyl,et al.  The Method of Maximum Entropy , 1995, Series on Advances in Mathematics for Applied Sciences.

[24]  Arthur P. Dempster,et al.  Upper and Lower Probabilities Induced by a Multivalued Mapping , 1967, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[25]  Didier Dubois,et al.  Joint Propagation and Exploitation of Probabilistic and Possibilistic Information in Risk Assessment , 2006, IEEE Transactions on Fuzzy Systems.

[26]  Didier Dubois,et al.  Probability-Possibility Transformations, Triangular Fuzzy Sets, and Probabilistic Inequalities , 2004, Reliab. Comput..

[27]  Scott Ferson,et al.  Constructing Probability Boxes and Dempster-Shafer Structures , 2003 .

[28]  Maurice G. Kendall,et al.  The advanced theory of statistics , 1945 .

[29]  Arnold Neumaier Clouds, Fuzzy Sets, and Probability Intervals , 2004, Reliab. Comput..

[30]  Didier Dubois,et al.  Comparing Methods for Joint Objective and Subjective Uncertainty Propagation with an example in a risk assessment , 2005, ISIPTA.

[31]  Maurice G. Kendall The advanced theory of statistics , 1958 .

[32]  Didier Dubois,et al.  Representation of Incomplete Probabilistic Information , 2004 .

[33]  D. Dubois,et al.  When upper probabilities are possibility measures , 1992 .

[34]  I. Bogardi,et al.  Steady State Groundwater Flow Simulation With Imprecise Parameters , 1995 .

[35]  S. Ferson,et al.  Different methods are needed to propagate ignorance and variability , 1996 .

[36]  D. Dubois,et al.  Fundamentals of fuzzy sets , 2000 .

[37]  D. Dubois,et al.  On Possibility/Probability Transformations , 1993 .

[38]  Philippe Smets,et al.  Belief functions on real numbers , 2005, Int. J. Approx. Reason..

[39]  Didier Dubois,et al.  Joint Treatment of Imprecision and Randomness in Uncertainty Propagation , 2006 .