Rational versus Intuitive Outcomes of Reasoning with Preferences: Argumentation Perspective

Reasoning with preference information is a common human activity. As modelling human reasoning is one of the main objectives of AI, reasoning with preferences is an important topic in various fields of AI, such as Knowledge Representation and Reasoning (KR). Argumentation is one particular branch of KR that concerns, among other tasks, modelling common-sense reasoning with preferences. A key issue there, is the lack of consensus on how to deal with preferences. Witnessing this is a multitude of proposals on how to formalise reasoning with preferences in argumentative terms. As a commonality, however, formalisms of argumentation with preferences tend to fulfil various criteria of `"rational" reasoning, notwithstanding the fact that human reasoning is often not `"rational", yet seemingly `"intuitive". In this paper, we study how several formalisms of argumentation with preferences model human intuition behind a particular common-sense reasoning problem. More specifically, we present a common-sense scenario of reasoning with rules and preferences, complemented with a survey of decisions made by human respondents that indicates an "intuitive" solution, and analyse how this problem is tackled in argumentation. We conclude that most approaches to argumentation with preferences afford a ``"rational" solution to the problem, and discuss one recent formalism that yields the "intuitive" solution instead. We argue that our results call for advancements in the area of argumentation with preferences in particular, as well as for further studies of reasoning with preferences in AI at large.

[1]  Henry Prakken,et al.  Introduction to structured argumentation , 2014, Argument Comput..

[2]  Sanjay Modgil,et al.  Reasoning about preferences in argumentation frameworks , 2009, Artif. Intell..

[3]  Pietro Baroni,et al.  An introduction to argumentation semantics , 2011, The Knowledge Engineering Review.

[4]  Phan Minh Dung,et al.  Assumption-Based Argumentation , 2009, Argumentation in Artificial Intelligence.

[5]  Henry Prakken,et al.  A general account of argumentation with preferences , 2013, Artif. Intell..

[6]  Martin Caminada,et al.  On the evaluation of argumentation formalisms , 2007, Artif. Intell..

[7]  A. Tversky,et al.  Prospect theory: an analysis of decision under risk — Source link , 2007 .

[8]  Michael Wooldridge,et al.  Weighted argument systems: Basic definitions, algorithms, and complexity results , 2011, Artif. Intell..

[9]  Toshiko Wakaki Assumption-Based Argumentation Equipped with Preferences , 2014, PRIMA.

[10]  Francesca Toni,et al.  Properties of ABA+ for Non-Monotonic Reasoning , 2016, ArXiv.

[11]  Martin Caminada,et al.  On the Limitations of Abstract Argumentation , 2011 .

[12]  Keith L. Clark,et al.  Negation as Failure , 1987, Logic and Data Bases.

[13]  Henry Prakken,et al.  The ASPIC+ framework for structured argumentation: a tutorial , 2014, Argument Comput..

[14]  Souhila Kaci,et al.  Working with Preferences: Less Is More , 2011, Cognitive Technologies.

[15]  Guillermo Ricardo Simari,et al.  Argumentation in Artificial Intelligence , 2009 .

[16]  Srdjan Vesic,et al.  Rich preference-based argumentation frameworks , 2014, Int. J. Approx. Reason..

[17]  J. Dessalles,et al.  Arguing, reasoning, and the interpersonal (cultural) functions of human consciousness , 2011, Behavioral and Brain Sciences.

[18]  Antonis C. Kakas,et al.  Argumentation based decision making for autonomous agents , 2003, AAMAS '03.

[19]  Francesca Toni,et al.  A tutorial on assumption-based argumentation , 2014, Argument Comput..

[20]  Anthony Hunter,et al.  Instantiating abstract argumentation with classical logic arguments: Postulates and properties , 2011, Artif. Intell..

[21]  Phan Minh Dung,et al.  An Abstract, Argumentation-Theoretic Approach to Default Reasoning , 1997, Artif. Intell..

[22]  Claudette Cayrol,et al.  A Reasoning Model Based on the Production of Acceptable Arguments , 2002, Annals of Mathematics and Artificial Intelligence.

[23]  Kristijonaš Cyras,et al.  ABA+: Assumption-Based Argumentation with Preferences , 2016, KR.

[24]  Henry Prakken,et al.  Reasoning about Preferences in Structured Extended Argumentation Frameworks , 2010, COMMA.

[25]  Gabriella Pigozzi,et al.  Preferences in artificial intelligence , 2016, Annals of Mathematics and Artificial Intelligence.

[26]  Phan Minh Dung,et al.  An axiomatic analysis of structured argumentation with priorities , 2016, Artif. Intell..

[27]  Guillermo Ricardo Simari,et al.  Defeasible logic programming: an argumentative approach , 2003, Theory and Practice of Logic Programming.

[28]  Carlos Angel Iglesias,et al.  A systematic review of argumentation techniques for multi-agent systems research , 2015, Artificial Intelligence Review.

[29]  Pietro Baroni,et al.  AFRA: Argumentation framework with recursive attacks , 2011, Int. J. Approx. Reason..

[30]  Thomas Eiter,et al.  Preferred Answer Sets for Extended Logic Programs , 1999, Artif. Intell..

[31]  Anthony Hunter,et al.  Constructing argument graphs with deductive arguments: a tutorial , 2014, Argument Comput..

[32]  Leon van der Torre,et al.  Preference-based argumentation: Arguments supporting multiple values , 2008, Int. J. Approx. Reason..

[33]  Sanjay Modgil,et al.  Prioritised Default Logic as Rational Argumentation , 2016, AAMAS.

[34]  Toshiko Wakaki,et al.  Preference-based argumentation built from prioritized logic programming , 2015, J. Log. Comput..

[35]  Eyke Hüllermeier,et al.  Preferences in AI: An overview , 2011, Artif. Intell..

[36]  Guillermo Ricardo Simari,et al.  Defeasible logic programming: DeLP-servers, contextual queries, and explanations for answers , 2014, Argument Comput..

[37]  Kristijonas Cyras,et al.  Argumentation-Based Reasoning with Preferences , 2016, PAAMS.

[38]  Souhila Kaci Refined Preference-based Argumentation Frameworks , 2010, COMMA.

[39]  Hannes Strass,et al.  Abstract Dialectical Frameworks Revisited , 2013, IJCAI.

[40]  Miroslaw Truszczynski,et al.  Preferences and Nonmonotonic Reasoning , 2008, AI Mag..

[41]  Phan Minh Dung,et al.  On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games , 1995, Artif. Intell..

[42]  Henri Prade,et al.  Using arguments for making and explaining decisions , 2009, Artif. Intell..

[43]  Anthony Hunter,et al.  A logic-based theory of deductive arguments , 2001, Artif. Intell..

[44]  Hans Tompits,et al.  A Classification and Survey of Preference Handling Approaches in Nonmonotonic Reasoning , 2004, Comput. Intell..

[45]  Trevor J. M. Bench-Capon Persuasion in Practical Argument Using Value-based Argumentation Frameworks , 2003, J. Log. Comput..