Strain energy-based multiaxial fatigue life prediction under normal/shear stress interaction

Through characterizing the interaction of normal/shear stress–strain behavior on material planes of TC4 alloys, a new strain energy critical plane model describing mean stress effects is proposed for life prediction under tension–compression, pure torsion, and tension–torsion loadings. Moreover, a modified Ince–Glinka model is elaborated through considering crack surface close to the maximum shear strain plane. Three simple solutions are presented to determine cracking failure mode using the concepts of life, damage, and strain. Comparing with lifing models of Liu, Smith–Watson–Topper, and modified Ince–Glinka, the proposed model provides more accurate life predictions for TC4 and a compressor turbine disc by full-scale fatigue testing.

[1]  J. Chaboche Constitutive equations for cyclic plasticity and cyclic viscoplasticity , 1989 .

[2]  Hong-Zhong Huang,et al.  A unified criterion for fatigue–creep life prediction of high temperature components , 2017 .

[3]  A. Fatemi,et al.  A CRITICAL PLANE APPROACH TO MULTIAXIAL FATIGUE DAMAGE INCLUDING OUT‐OF‐PHASE LOADING , 1988 .

[4]  V. F. González-Albuixech,et al.  On the temperature independence of statistical model parameters for cleavage fracture in ferritic steels , 2018 .

[5]  Zhiyong Wu,et al.  Multiaxial fatigue life prediction for titanium alloy TC4 under proportional and nonproportional loading , 2014 .

[6]  G. Meneghetti,et al.  A Simple and Efficient Reformulation of the Classical Manson–Coffin Curve to Predict Lifetime Under Multiaxial Fatigue Loading—Part II: Notches , 2009 .

[7]  Eric Charkaluk,et al.  An energetic approach in thermomechanical fatigue for silicon molybdenum cast iron , 2000 .

[8]  Katharina Weiss,et al.  Engineering Fracture Mechanics , 2016 .

[9]  M. Nagode,et al.  Dissipated energy-based fatigue lifetime calculation under multiaxial plastic thermo-mechanical loading , 2015 .

[10]  G. Rashed,et al.  Evaluation of Multiaxial Fatigue Life Prediction Model based on Critical Plane for Notched Specimens , 2008 .

[11]  F. A. Conle,et al.  Multiaxial Stress-Strain Modeling and Fatigue Life Prediction of SAE Axle Shafts , 1993 .

[12]  Nicholas R. Gates,et al.  On the consideration of normal and shear stress interaction in multiaxial fatigue damage analysis , 2017 .

[13]  Mácha,et al.  Energy criteria of multiaxial fatigue failure , 1999 .

[14]  Hamid Jahed,et al.  Multiaxial effects on LCF behaviour and fatigue failure of AZ31B magnesium extrusion , 2014 .

[15]  Tu Shan-Tung,et al.  Effects of Stress Level and Stress State on Creep Ductility: Evaluation of Different Models , 2016 .

[16]  K. N. Smith A Stress-Strain Function for the Fatigue of Metals , 1970 .

[17]  Luca Susmel,et al.  The Modified Manson–Coffin Curve Method to estimate fatigue lifetime under complex constant and variable amplitude multiaxial fatigue loading , 2016 .

[18]  Abílio M. P. De Jesus,et al.  Strain energy-based fatigue life prediction under variable amplitude loadings , 2018 .

[19]  C. H. Wang,et al.  Multiaxial random load fatigue: life prediction techniques and experiments , 2013 .

[20]  Weiwen Peng,et al.  Mean stress effect correction in strain energy-based fatigue life prediction of metals , 2017 .

[21]  Ayhan Ince,et al.  A mean stress correction model for tensile and compressive mean stress fatigue loadings , 2017 .

[22]  A. Aid,et al.  A non-linear energy model of fatigue damage accumulation and its verification for Al-2024 aluminum alloy. International Journal of Non-Linear Mechanics. Vol 51, pp 145–151, 2013. , 2013 .

[23]  Lei Wang,et al.  Evaluation of multiaxial fatigue life prediction criteria for PEEK , 2014 .

[24]  Shun-Peng Zhu,et al.  Strain energy gradient-based LCF life prediction of turbine discs using critical distance concept , 2018, International Journal of Fatigue.

[25]  G. B. Broggiato,et al.  The Chaboche nonlinear kinematic hardening model: calibration methodology and validation , 2008 .

[26]  Filippo Berto,et al.  Fatigue strength of severely notched specimens made of Ti–6Al–4V under multiaxial loading , 2015 .

[27]  A. Varvani-Farahani,et al.  A new energy-critical plane parameter for fatigue life assessment of various metallic materials subjected to in-phase and out-of-phase multiaxial fatigue loading conditions , 2000 .

[28]  Thierry Palin-Luc,et al.  A non‐local theory applied to high cycle multiaxial fatigue , 2002 .

[29]  O. Basquin The exponential law of endurance tests , 1910 .

[30]  Jean-Louis Chaboche,et al.  A review of some plasticity and viscoplasticity constitutive theories , 2008 .

[31]  Joachim Rösler,et al.  Mechanical Behaviour of Engineering Materials: Metals, Ceramics, Polymers, and Composites , 2007 .

[32]  Weiwen Peng,et al.  Probabilistic Physics of Failure-based framework for fatigue life prediction of aircraft gas turbine discs under uncertainty , 2016, Reliab. Eng. Syst. Saf..

[33]  Shun-Peng Zhu,et al.  Mean Stress and Ratcheting Corrections in Fatigue Life Prediction of Metals , 2016 .

[34]  D. Shang,et al.  Multiaxial high-cycle fatigue life prediction model based on the critical plane approach considering mean stress effects , 2018 .

[35]  Jiang Fan,et al.  Probabilistic damage tolerance analysis on turbine disk through experimental data , 2012 .

[36]  Xu Chen,et al.  Evaluation of multiaxial fatigue criteria under irregular loading , 2002 .

[37]  S. Beretta,et al.  Fatigue Crack Growth in Blade Attachment of Turbine Disks: Experimental Tests and Life Prediction , 2015 .

[38]  Dianyin Hu,et al.  Combined fatigue experiments on full scale turbine components , 2013 .

[39]  Ahmad Ghasemi-Ghalebahman,et al.  A fatigue model for sensitive materials to non-proportional loadings , 2015 .

[40]  Shun-Peng Zhu,et al.  A modified strain energy density exhaustion model for creep–fatigue life prediction , 2016 .

[41]  Nicole Apetre,et al.  Generalized probabilistic model allowing for various fatigue damage variables , 2017 .

[42]  Dianyin Hu,et al.  Creep-fatigue behavior of turbine disc of superalloy GH720Li at 650 °C and probabilistic creep-fatigue modeling , 2016 .

[43]  Jing Deng,et al.  Multiaxial fatigue damage parameter and life prediction for medium-carbon steel based on the critical plane approach , 2007 .

[44]  Shan-Tung Tu,et al.  Creep-fatigue life prediction and interaction diagram in nickel-based GH4169 superalloy at 650 °C based on cycle-by-cycle concept , 2017 .

[45]  A. Varvani-Farahani,et al.  Energy-based damage descriptions to assess fatigue life of steel samples undergoing various multiaxial loading spectra , 2019 .

[46]  Shan-Tung Tu,et al.  High temperature fatigue and creep-fatigue behaviors in a Ni-based superalloy: Damage mechanisms and life assessment , 2019, International Journal of Fatigue.

[47]  Andrea Carpinteri,et al.  Fatigue assessment of notched specimens by means of a critical plane-based criterion and energy concepts , 2016 .

[48]  Yunhan Liu,et al.  A New Energy-Critical Plane Damage Parameter for Multiaxial Fatigue Life Prediction of Turbine Blades , 2017, Materials.

[49]  Thierry Palin-Luc,et al.  A volumetric energy based high cycle multiaxial fatigue citerion , 2003 .

[50]  Kais Ammar,et al.  Multiaxial high-cycle fatigue criteria and life prediction : Application to gas turbine blade , 2016 .

[51]  Bernd Markert,et al.  Multiaxial fatigue life assessment of sintered porous iron under proportional and non-proportional loadings , 2017 .

[52]  Thierry Palin-Luc,et al.  An energy based criterion for high cycle multiaxial fatigue , 1998 .

[53]  Shun-Peng Zhu,et al.  Fatigue reliability assessment of turbine discs under multi‐source uncertainties , 2018 .

[54]  Hong-Zhong Huang,et al.  Fatigue Life Estimation of an Aircaft Engine Under Different Load Spectrums , 2012 .

[55]  Ayhan Ince,et al.  A generalized fatigue damage parameter for multiaxial fatigue life prediction under proportional and non-proportional loadings , 2014 .

[56]  Weiwen Peng,et al.  Computational-experimental approaches for fatigue reliability assessment of turbine bladed disks , 2018, International Journal of Mechanical Sciences.

[57]  Kc Liu,et al.  A Method Based on Virtual Strain-Energy Parameters for Multiaxial Fatigue Life Prediction , 1993 .

[58]  Ali Fatemi,et al.  Multiaxial fatigue of titanium including step loading and load path alteration and sequence effects , 2010 .

[59]  Yanyao Jiang,et al.  Fatigue life and early cracking predictions of extruded AZ31B magnesium alloy using critical plane approaches , 2016 .

[60]  Yanyao Jiang,et al.  Fatigue of extruded AZ31B magnesium alloy under stress- and strain-controlled conditions including step loading , 2017 .

[61]  Xu Chen,et al.  A critical plane-strain energy density criterion for multiaxial low-cycle fatigue life under non-proportional loading , 1999 .

[62]  Shun-Peng Zhu,et al.  Evaluation and comparison of critical plane criteria for multiaxial fatigue analysis of ductile and brittle materials , 2018, International Journal of Fatigue.

[63]  Qiang Liu,et al.  Probabilistic fatigue life prediction and reliability assessment of a high pressure turbine disc considering load variations , 2017 .

[64]  Ali A. Roostaei,et al.  Multiaxial cyclic behaviour and fatigue modelling of AM30 Mg alloy extrusion , 2017 .

[65]  Luca Susmel,et al.  Multiaxial notch fatigue , 2009 .

[66]  Shun-Peng Zhu,et al.  Probabilistic framework for multiaxial LCF assessment under material variability , 2017 .

[67]  Guian Qian,et al.  Comparison of constraint analyses with global and local approaches under uniaxial and biaxial loadings , 2018 .

[68]  Chun H. Wang,et al.  A PATH-INDEPENDENT PARAMETER FOR FATIGUE UNDER PROPORTIONAL AND NON-PROPORTIONAL LOADING , 1993 .

[69]  Shun-Peng Zhu,et al.  Critical plane–based multiaxial fatigue life prediction of turbine disk alloys by refining normal stress sensitivity , 2018, The Journal of Strain Analysis for Engineering Design.

[70]  Luca Susmel,et al.  Multiaxial notch fatigue : from nominal to local stress/strain quantities , 2009 .