Video information retrieval using objects and ostensive relevance feedback

The thesis discusses and evaluates a model of video information retrieval that incorporates a variation of Relevance Feedback and facilitates object-based interaction and ranking. Object-based feature search for video IR is one of the main novel aspects of this work.

[1]  Iain Campbell,et al.  Interactive Evaluation of the Ostensive Model Using a New Test Collection of Images with Multiple Relevance Assessments , 2000, Information Retrieval.

[2]  Paul Over,et al.  TRECVID: Benchmarking the Effectivenss of Information Retrieval Tasks on Digital Video , 2003, CIVR.

[3]  Nicholas J. Belkin,et al.  Using Relevance Feedback and Ranking in Interactive Searching , 1995, TREC.

[4]  Lawrence Wai-Choong Wong,et al.  ANSES: Summarisation of News Video , 2003, CIVR.

[5]  Peter Ingwersen,et al.  Information Retrieval Interaction , 1992 .

[6]  Michael G. Christel,et al.  The effect of text in storyboards for video navigation , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[7]  Boon-Lock Yeo,et al.  Retrieving and visualizing video , 1997, CACM.

[8]  Alan F. Smeaton,et al.  Dublin City University Video Track Experiments for TREC 2002 , 2001, TREC.

[9]  Eero Sormunen,et al.  End-User Searching Challenges Indexing Practices in the Digital Newspaper Photo Archive , 2004, Information Retrieval.

[10]  Peter G. B. Enser,et al.  Analysis of user need in image archives , 1997, J. Inf. Sci..

[11]  Peter G. B. Enser,et al.  Retrieval of Archival Moving Imagery - CBIR Outside the Frame? , 2002, CIVR.

[12]  Alan F. Smeaton Challenges for Content-Based Navigation of Digital Video in the Físchlár Digital Library , 2002, CIVR.

[13]  Shingo Uchihashi,et al.  An interactive comic book presentation for exploring video , 2000, CHI.

[14]  Peter G. B. Enser,et al.  Visual image retrieval: seeking the alliance of concept-based and content-based paradigms , 2000, J. Inf. Sci..