Unfolding quantum computer readout noise

In the current era of noisy intermediate-scale quantum computers, noisy qubits can result in biased results for early quantum algorithm applications. This is a significant challenge for interpreting results from quantum computer simulations for quantum chemistry, nuclear physics, high energy physics (HEP), and other emerging scientific applications. An important class of qubit errors are readout errors. The most basic method to correct readout errors is matrix inversion, using a response matrix built from simple operations to probe the rate of transitions from known initial quantum states to readout outcomes. One challenge with inverting matrices with large off-diagonal components is that the results are sensitive to statistical fluctuations. This challenge is familiar to HEP, where prior-independent regularized matrix inversion techniques (“unfolding”) have been developed for years to correct for acceptance and detector effects, when performing differential cross section measurements. We study one such method, known as iterative Bayesian unfolding, as a potential tool for correcting readout errors from universal gate-based quantum computers. This method is shown to avoid pathologies from commonly used matrix inversion and least squares methods.

[1]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[2]  R. Sipio,et al.  Unfolding measurement distributions via quantum annealing , 2019, Journal of High Energy Physics.

[3]  G. Zech,et al.  Binning-Free Unfolding Based on Monte Carlo Migration , 2003 .

[4]  K. Yee Unfolding. , 2003, The Pharos of Alpha Omega Alpha-Honor Medical Society. Alpha Omega Alpha.

[5]  R. Sipio,et al.  Unfolding as Quantum Annealing , 2019, 1908.08519.

[6]  D. Bacon,et al.  Quantum approximate optimization of non-planar graph problems on a planar superconducting processor , 2020, Nature Physics.

[7]  R. Pooser,et al.  Cloud Quantum Computing of an Atomic Nucleus. , 2018, Physical Review Letters.

[8]  H. De Raedt,et al.  Testing quantum fault tolerance on small systems , 2018, Physical Review A.

[9]  A. Gionis,et al.  Data Analysis , 1996, Data Sci. J..

[10]  James R. Wootton,et al.  Repetition code of 15 qubits , 2017, 1709.00990.

[11]  Kristan Temme,et al.  Error Mitigation for Short-Depth Quantum Circuits. , 2016, Physical review letters.

[12]  Kristan Temme,et al.  Error mitigation extends the computational reach of a noisy quantum processor , 2019, Nature.

[13]  L. Lucy An iterative technique for the rectification of observed distributions , 1974 .

[14]  J. Preskill,et al.  Quantum Algorithms for Fermionic Quantum Field Theories , 2014, 1404.7115.

[15]  G. D'Agostini,et al.  A Multidimensional unfolding method based on Bayes' theorem , 1995 .

[16]  G. Zech,et al.  Unfolding by weighting Monte Carlo events , 1995 .

[17]  B. Efron Bootstrap Methods: Another Look at the Jackknife , 1979 .

[18]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[19]  Xuliang Zhao,et al.  7. , 1966, The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians.

[20]  John Preskill,et al.  Quantum computation of scattering in scalar quantum field theories , 2011, Quantum Inf. Comput..

[21]  L. Shepp,et al.  Maximum Likelihood Reconstruction for Emission Tomography , 1983, IEEE Transactions on Medical Imaging.

[22]  A. Hoecker,et al.  SVD APPROACH TO DATA UNFOLDING , 1995, hep-ph/9509307.

[23]  Stefan Schmitt,et al.  TUnfold, an algorithm for correcting migration effects in high energy physics , 2012, 1205.6201.

[24]  Robert B. Griffiths,et al.  Quantum Error Correction , 2011 .

[25]  Travis S. Humble,et al.  XACC: a system-level software infrastructure for heterogeneous quantum–classical computing , 2019, Quantum Science and Technology.

[26]  Volker Blobel,et al.  Unfolding Methods in Particle Physics , 2011 .

[27]  George Siopsis,et al.  Scalar quantum field theories as a benchmark for near-term quantum computers , 2018, Physical Review A.

[28]  William H. Richardson,et al.  Bayesian-Based Iterative Method of Image Restoration , 1972 .

[29]  Panagiotis Spentzouris,et al.  Electron-Phonon Systems on a Universal Quantum Computer. , 2018, Physical review letters.

[30]  John Preskill,et al.  Quantum Algorithms for Quantum Field Theories , 2011, Science.

[31]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[32]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[33]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[34]  C. Ross Found , 1869, The Dental register.

[35]  B. Nachman,et al.  Resource Efficient Zero Noise Extrapolation with Identity Insertions , 2020, 2003.04941.

[36]  Natalie Klco,et al.  Digitization of scalar fields for quantum computing , 2018, Physical Review A.

[37]  Volker Blobel,et al.  Unfolding Methods in High-energy Physics Experiments , 1984 .

[39]  John M. Martinis,et al.  State preservation by repetitive error detection in a superconducting quantum circuit , 2015, Nature.

[40]  Ying Li,et al.  Efficient Variational Quantum Simulator Incorporating Active Error Minimization , 2016, 1611.09301.

[41]  G. Choudalakis Fully Bayesian Unfolding , 2012, 1201.4612.

[42]  Rolando D. Somma,et al.  Quantum simulations of one dimensional quantum systems , 2015, Quantum Inf. Comput..

[43]  J. Gambetta,et al.  Error mitigation extends the computational reach of a noisy quantum processor , 2018, Nature.

[44]  N. Klco,et al.  Minimally entangled state preparation of localized wave functions on quantum computers , 2019, 1904.10440.

[45]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[46]  D. Dieks Communication by EPR devices , 1982 .

[47]  Alexander Glazov,et al.  Machine learning as an instrument for data unfolding , 2017, 1712.01814.

[48]  John Preskill,et al.  BQP-completeness of Scattering in Scalar Quantum Field Theory , 2014, 1703.00454.

[49]  Nikolai Gagunashvili,et al.  Machine learning approach to inverse problem and unfolding procedure , 2010, 1004.2006.

[50]  Panagiotis Spentzouris,et al.  Digital quantum computation of fermion-boson interacting systems , 2018, Physical Review A.

[51]  James L. Park The concept of transition in quantum mechanics , 1970 .

[52]  Michal Oszmaniec,et al.  Mitigation of readout noise in near-term quantum devices by classical post-processing based on detector tomography , 2019, Quantum.

[53]  Andrew W. Cross,et al.  Experimental Demonstration of Fault-Tolerant State Preparation with Superconducting Qubits. , 2017, Physical review letters.

[54]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[55]  Moinuddin K. Qureshi,et al.  Mitigating Measurement Errors in Quantum Computers by Exploiting State-Dependent Bias , 2019, MICRO.

[56]  S. Benjamin,et al.  Practical Quantum Error Mitigation for Near-Future Applications , 2017, Physical Review X.

[57]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[58]  V. Kendon,et al.  Protecting quantum memories using coherent parity check codes , 2017, Quantum Science and Technology.

[59]  Caroline Figgatt,et al.  Fault-tolerant quantum error detection , 2016, Science Advances.

[60]  Travis S. Humble,et al.  Quantum chemistry as a benchmark for near-term quantum computers , 2019, npj Quantum Information.

[61]  Robin Harper,et al.  Fault-Tolerant Logical Gates in the IBM Quantum Experience. , 2018, Physical review letters.

[62]  W. Munro,et al.  Quantum error correction for beginners , 2009, Reports on progress in physics. Physical Society.

[63]  B. Nachman,et al.  Error detection on quantum computers improving the accuracy of chemical calculations , 2019, Physical Review A.