Surface plasmon polaritons: physics and applications

Surface plasmon polaritons (SPPs) are electromagnetic excitations existing at the interface between a metal and a dielectric material. Remarkable progress has been made in the field of SPPs in recent years. Control and manipulation of light using SPPs on the nanometre scale exhibit significant advantages in nanophotonics devices with very small elements, and SPPs open a promising way in areas involving environment, energy, biology and medicine. This paper presents an overview of current research activities on SPPs, including fundamental physics and applications. We first discuss the excitation of SPPs based on the SPP dispersion relation, coupling to SPPs by momentum matching between photons and SPPs, and propagation behaviour of SPPs. Based on the physical mechanism and the peculiar properties of SPPs, we demonstrate the major applications of SPPs, such as waveguides, sources, near-field optics, surface-enhanced Raman spectroscopy, data storage, solar cells, chemical sensors and biosensors.

[1]  R. V. Van Duyne,et al.  A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. , 2002, Journal of the American Chemical Society.

[2]  D. L. Jeanmaire,et al.  Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode , 1977 .

[3]  C. Mirkin,et al.  Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[4]  J. Hardy,et al.  The Amyloid Hypothesis of Alzheimer ’ s Disease : Progress and Problems on the Road to Therapeutics , 2009 .

[5]  U. Fano,et al.  Atomic Theory of Electromagnetic Interactions in Dense Materials , 1956 .

[6]  J. Pendry,et al.  Collective Theory for Surface Enhanced Raman Scattering. , 1996, Physical review letters.

[7]  Paul Mulvaney,et al.  Laser Writing in Polarized Silver Nanorod Films , 2002 .

[8]  Alessandro Salandrino,et al.  Optical spectrometer at the nanoscale using optical Yagi-Uda nanoantennas , 2009 .

[9]  F. Aussenegg,et al.  Electromagnetic energy transport via linear chains of silver nanoparticles. , 1998, Optics letters.

[10]  Youguo Yan,et al.  Polarization properties of ordered copper nanowire microarrays embedded in anodic alumina membrane , 2004 .

[11]  David R. Smith,et al.  Shape effects in plasmon resonance of individual colloidal silver nanoparticles , 2002 .

[12]  Specht,et al.  Scanning plasmon near-field microscope. , 1992, Physical review letters.

[13]  Dieter Meissner,et al.  Metal cluster enhanced organic solar cells , 2000 .

[14]  Raman Kashyap,et al.  Fiber-Bragg-grating-assisted surface plasmon-polariton sensor. , 2006, Optics letters.

[15]  P. Nordlander,et al.  Plasmonic focusing in symmetry broken nanocorrals. , 2011, Nano letters.

[16]  Martin Moskovits,et al.  Surface-Enhanced Raman Scattering , 2006 .

[17]  J. Homola Present and future of surface plasmon resonance biosensors , 2003, Analytical and bioanalytical chemistry.

[18]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[19]  Fritz Keilmann,et al.  Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy , 2000 .

[20]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[21]  D. Bedeaux,et al.  The polarizability of a truncated sphere on a substrate II , 1987 .

[22]  E. V. Chulkov,et al.  Theory of surface plasmons and surface-plasmon polaritons , 2007 .

[23]  Pierre Berini,et al.  Surface plasmon–polariton amplifiers and lasers , 2011, Nature Photonics.

[24]  M. Fleischmann,et al.  Raman spectra of pyridine adsorbed at a silver electrode , 1974 .

[25]  Excitation of Surface Plasmons Using Tilted Planar-Waveguide Bragg Gratings , 2011, IEEE Photonics Journal.

[26]  J. Garnett,et al.  Colours in Metal Glasses and in Metallic Films , 1904 .

[27]  Raman Kashyap,et al.  Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation , 2007 .

[28]  Y. Kawata,et al.  Polarization-multiplexed optical memory with urethane-urea copolymers. , 1999, Applied Optics.

[29]  Richard J. Blaikie,et al.  Submicron imaging with a planar silver lens , 2004 .

[30]  M. Albrecht,et al.  Anomalously intense Raman spectra of pyridine at a silver electrode , 1977 .

[31]  Charles M. Lieber,et al.  Single-nanowire electrically driven lasers , 2003, Nature.

[32]  Youguo Yan,et al.  Microarrays of silver nanowires embedded in anodic alumina membrane templates: size dependence of polarization characteristics. , 2006, Applied optics.

[33]  David Pines,et al.  COLLECTIVE ENERGY LOSSES IN SOLIDS , 1956 .

[34]  W. Xu,et al.  A comparison of surface enhanced Raman scattering property between silver electrodes and periodical silver nanowire arrays , 2009 .

[35]  M. Ashino,et al.  Fabrication and evaluation of a localized plasmon resonance probe for near-field optical microscopy/spectroscopy , 1998 .

[36]  Yi Xiong,et al.  Realization of optical superlens imaging below the diffraction limit , 2005 .

[37]  G. Schatz,et al.  Electromagnetic fields around silver nanoparticles and dimers. , 2004, The Journal of chemical physics.

[38]  Y. Kadoya,et al.  Directional control of light by a nano-optical Yagi–Uda antenna , 2009, 0910.2291.

[39]  R. Wood XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum , 1902 .

[40]  A. Koenderink Plasmon nanoparticle array waveguides for single photon and single plasmon sources. , 2009, Nano letters.

[41]  S. Kawata,et al.  Plasmonics for near-field nano-imaging and superlensing , 2009 .

[42]  Dana D. Dlott,et al.  Measurement of the Distribution of Site Enhancements in Surface-Enhanced Raman Scattering , 2008, Science.

[43]  X. Zhang,et al.  A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation , 2008 .

[44]  C. Sanchez,et al.  A selective chemical sensor based on the plasmonic response of phosphinine-stabilized gold nanoparticles hosted on periodically organized mesoporous silica thin layers. , 2005, Small.

[45]  Chad A Mirkin,et al.  Colorimetric screening of DNA-binding molecules with gold nanoparticle probes. , 2006, Angewandte Chemie.

[46]  D. Bedeaux,et al.  Polarizability of truncated spheroidal particles supported by a substrate: model and applications , 2001 .

[47]  Javier Aizpurua,et al.  Controlling the near-field oscillations of loaded plasmonic nanoantennas , 2009 .

[48]  Antao Chen,et al.  Integration of photonic and silver nanowire plasmonic waveguides. , 2008, Nature nanotechnology.

[49]  A. Heltzel,et al.  Surface plasmon-based nanopatterning assisted by gold nanospheres , 2008, Nanotechnology.

[50]  Yurui Fang,et al.  Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons. , 2009, Nano letters.

[51]  Alexei A. Maradudin,et al.  Effect of a charge layer on the surface-plasmon-polariton dispersion curve , 1974 .

[52]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[53]  Fernando D Stefani,et al.  Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna. , 2008, Optics express.

[54]  J. Strickler,et al.  Three-dimensional optical data storage in refractive media by two-photon point excitation. , 1991, Optics letters.

[55]  Chad A Mirkin,et al.  A gold nanoparticle based approach for screening triplex DNA binders. , 2006, Journal of the American Chemical Society.

[56]  D. Sarid Long-Range Surface-Plasma Waves on Very Thin Metal Films , 1981 .

[57]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[58]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[59]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[60]  B. D. Gupta,et al.  Fiber-Optic Sensors Based on Surface Plasmon Resonance: A Comprehensive Review , 2007, IEEE Sensors Journal.

[61]  Yunki Kim,et al.  Surface plasmon scanning near-field optical microscopy , 1997 .

[62]  W. Xu,et al.  Ultrasensitive detection using surface enhanced Raman scattering from silver nanowire arrays in anodic alumina membranes. , 2009, Journal of nanoscience and nanotechnology.

[63]  Ibrahim Abdulhalim,et al.  Surface Plasmon Resonance for Biosensing: A Mini-Review , 2008 .

[64]  G. Lerosey,et al.  Controlling the phase and amplitude of plasmon sources at a subwavelength scale. , 2009, Nano letters.

[65]  J. Hvam,et al.  Waveguiding in surface plasmon polariton band gap structures. , 2001, Physical review letters.

[66]  Alistair Elfick,et al.  Finite element simulations of tip-enhanced Raman and fluorescence spectroscopy. , 2006, The journal of physical chemistry. B.

[67]  H. Ditlbacher,et al.  Spectrally coded optical data storage by metal nanoparticles. , 2000, Optics letters.

[68]  Pierre Berini,et al.  Characterization of long-range surface-plasmon-polariton waveguides , 2005 .

[69]  T. Ebbesen,et al.  Channel plasmon-polariton guiding by subwavelength metal grooves. , 2005, Physical review letters.

[70]  R A Linke,et al.  Beaming Light from a Subwavelength Aperture , 2002, Science.

[71]  M. Smit,et al.  Lasing in metallic-coated nanocavities , 2007 .

[72]  Günter Gauglitz,et al.  Surface plasmon resonance sensors: review , 1999 .

[73]  Luca Dal Negro,et al.  Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing. , 2009, Nano letters.

[74]  Anatoly V. Zayats,et al.  Near-field photonics: surface plasmon polaritons and localized surface plasmons , 2003 .

[75]  R. Zenobi,et al.  Nanoscale chemical analysis by tip-enhanced Raman spectroscopy , 2000 .

[76]  Reinhardt Willsch,et al.  Distributed optochemical sensor network using evanescent field interaction in fibre Bragg gratings , 1998, Optical Fibre Sensors.

[77]  S. Kawata Near-Field Optics and Surface Plasmon Polaritons , 2001 .

[78]  Alessandro Salandrino,et al.  Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain , 2007 .

[79]  R. H. Ritchie,et al.  Surface-Plasmon Resonance Effect in Grating Diffraction , 1968 .

[80]  A. Maradudin,et al.  Nano-optics of surface plasmon polaritons , 2005 .

[81]  Martin Moskovits,et al.  Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals , 1978 .

[82]  Sang‐Hyun Oh,et al.  Ultrasmooth Patterned Metals for Plasmonics and Metamaterials , 2009, Science.

[83]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[84]  William L. Barnes,et al.  REVIEW ARTICLE: Surface plasmon polariton length scales: a route to sub-wavelength optics , 2006 .

[85]  David R. Smith,et al.  Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles , 2003 .

[86]  Lukas Novotny,et al.  Effective wavelength scaling for optical antennas. , 2007, Physical review letters.

[87]  R. H. Ritchie Plasma Losses by Fast Electrons in Thin Films , 1957 .

[88]  U. Kreibig,et al.  Surface plasma resonances in small spherical silver and gold particles , 1970 .

[89]  Vahid Sandoghdar,et al.  Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. , 2006, Physical review letters.

[90]  A. Otto Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection , 1968 .

[91]  A. Kumar,et al.  Side-Polished Optical Fiber Grating-Based Refractive Index Sensors Utilizing the Pure Surface Plasmon Polariton , 2008, Journal of Lightwave Technology.

[92]  In-Yong Park,et al.  High-harmonic generation by resonant plasmon field enhancement , 2008, Nature.

[93]  Garnett W. Bryant,et al.  Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies , 2006 .

[94]  Wolfgang Ecke,et al.  Modelling of the surface plasmon resonance waveguide sensor with Bragg grating , 1999 .

[95]  A. Geim,et al.  Nanofabricated media with negative permeability at visible frequencies , 2005, Nature.

[96]  G. Schatz Electrodynamics of nonspherical noble metal nanoparticles and nanoparticle aggregates , 2001 .

[97]  Domenico Pacifici,et al.  Plasmonic nanostructure design for efficient light coupling into solar cells. , 2008, Nano letters.

[98]  P. Berini Long-range surface plasmon polaritons , 2009 .

[99]  Jean-Claude Weeber,et al.  Plasmon polaritons of metallic nanowires for controlling submicron propagation of light , 1999 .

[100]  S. Oldenburg,et al.  Base pair mismatch recognition using plasmon resonant particle labels. , 2002, Analytical biochemistry.

[101]  Seth R. Marder,et al.  Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication , 1999, Nature.

[102]  Jacques Peretti,et al.  Surface-enhanced magneto-optics in metallic multilayer films , 2001 .

[103]  Thomas A. Klar,et al.  Gold nanoshells improve single nanoparticle molecular sensors , 2004 .

[104]  Louis E. Brus,et al.  Surface Enhanced Raman Spectroscopy of Individual Rhodamine 6G Molecules on Large Ag Nanocrystals , 1999 .

[105]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[106]  Federico Capasso,et al.  Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection. , 2009, Nano letters.

[107]  Harry A. Atwater,et al.  Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides , 2003, Nature materials.

[108]  R. Kashyap,et al.  Theoretical model of a planar waveguide refractive index sensor assisted by a corrugated long period metal grating , 2008 .

[109]  Holger F. Hofmann,et al.  Design parameters for a nano-optical Yagi–Uda antenna , 2007, cond-mat/0703595.

[110]  Eugenia Kumacheva,et al.  A Multidye Nanostructured Material for Optical Data Storage and Security Data Encryption , 2004 .

[111]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[112]  Dirk Englund,et al.  Ultrafast photonic crystal nanocavity laser , 2006 .

[113]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[114]  T. N. Taylor,et al.  Dendrimer-Modified Silicon Oxide Surfaces as Platforms for the Deposition of Gold and Silver Colloid Monolayers: Preparation Method, Characterization, and Correlation between Microstructure and Optical Properties , 1996 .

[115]  G. Wurtz,et al.  Plasmonic nanorod metamaterials for biosensing. , 2009, Nature materials.

[116]  George C. Schatz,et al.  Electrodynamics of Noble Metal Nanoparticles and Nanoparticle Clusters , 1999 .

[117]  P. Jain,et al.  Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. , 2006, The journal of physical chemistry. B.

[118]  Anatoly V Zayats,et al.  Data storage: The third plasmonic revolution. , 2010, Nature nanotechnology.

[119]  Kelly P. Knutsen,et al.  Single gallium nitride nanowire lasers , 2002, Nature materials.

[120]  E. Kretschmann,et al.  Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light , 1968 .

[121]  C. Borczyskowski,et al.  Enhancement of the photovoltaic conversion efficiency of copper phthalocyanine thin film devices by incorporation of metal clusters , 1995 .

[122]  Masud Mansuripur,et al.  Plasmonic nano-structures for optical data storage , 2009 .

[123]  Raman Kashyap,et al.  Surface Plasmon Resonance-Based Fiber and Planar Waveguide Sensors , 2009, J. Sensors.

[124]  Henry J. Snaith,et al.  Advances in Liquid‐Electrolyte and Solid‐State Dye‐Sensitized Solar Cells , 2007 .

[125]  Chad A Mirkin,et al.  Nanostructures in biodiagnostics. , 2005, Chemical reviews.

[126]  Min Gu,et al.  Five-dimensional optical recording mediated by surface plasmons in gold nanorods , 2009, Nature.

[127]  L. A. Bumm,et al.  Near-field spectroscopy of surface plasmons in flat gold nanoparticles. , 2007, Optics letters.