Convergence and stability analysis for implicit simulations of stochastic differential equations with random jump magnitudes

Stochastic differential equations with Poisson driven jumps of random magnitude are popular as models in mathematical finance. Strong, or pathwise, simulation of these models is required in various settings and long time stability is desirable to control error growth. Here, we examine strong convergence and mean-square stability of a class of implicit numerical methods, proving both positive and negative results. The analysis is backed up with numerical experiments.

[1]  Andrew M. Stuart,et al.  Strong Convergence of Euler-Type Methods for Nonlinear Stochastic Differential Equations , 2002, SIAM J. Numer. Anal..

[2]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[3]  Desmond J. Higham,et al.  Mean-Square and Asymptotic Stability of the Stochastic Theta Method , 2000, SIAM J. Numer. Anal..

[4]  Paul Glasserman,et al.  Numerical solution of jump-diffusion LIBOR market models , 2003, Finance Stochastics.

[5]  Nicola Bruti-Liberati,et al.  On the Strong Approximation of Jump-Diffusion Processes , 2005 .

[6]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[7]  Eckhard Platen,et al.  Time Discrete Taylor Approximations for Itǒ Processes with Jump Component , 1988 .

[8]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[9]  Zongwu Zhu,et al.  A Monte-Carlo Option-Pricing Algorithm for Log-Uniform Jump-Diffusion Model , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[10]  A. Svishchuk,et al.  THE STOCHASTIC STABILITY OF INTEREST RATES WITH JUMP CHANGES , 2000 .

[11]  K. Sobczyk Stochastic Differential Equations: With Applications to Physics and Engineering , 1991 .

[12]  R. Cont,et al.  Financial Modelling with Jump Processes , 2003 .

[13]  Paul Glasserman,et al.  Convergence of a discretization scheme for jump-diffusion processes with state–dependent intensities , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[14]  P. Kloeden,et al.  CONVERGENCE AND STABILITY OF IMPLICIT METHODS FOR JUMP-DIFFUSION SYSTEMS , 2005 .

[15]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[16]  René L. Schilling Measures, Integrals and Martingales: Martingales , 2005 .

[17]  Y. Maghsoodi,et al.  In-Probability Approximation and Simulation of Nonlinear Jump-Diffusion Stochastic Differential Equations , 1987 .

[18]  Desmond J. Higham A-STABILITY AND STOCHASTIC MEAN-SQUARE STABILITY , 2000 .

[19]  Y. Maghsoodi,et al.  Exact solutions and doubly efficient approximations of jump-diffusion itô equations , 1998 .

[20]  A. Vannucci,et al.  BICS Bath Institute for Complex Systems A note on time-dependent DiPerna-Majda measures , 2008 .

[21]  F. Hanson,et al.  Option pricing for a stochastic-volatility jump-diffusion model with log-uniform jump-amplitudes , 2006, 2006 American Control Conference.

[22]  J. J. Westman,et al.  Optimal consumption and portfolio control for jump-diffusion stock process with log-normal jumps , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[23]  A. Gardon The Order of Approximations for Solutions of Itô-Type Stochastic Differential Equations with Jumps , 2004 .

[24]  Desmond J. Higham,et al.  Exponential mean square stability of numerical solutions to stochastic differential equations , 2003 .

[25]  E. Platen,et al.  On the Strong Approximation of Pure Jump Processes , 2005 .