Dark Energy Survey year 1 results: Joint analysis of galaxy clustering, galaxy lensing, and CMB lensing two-point functions

Author(s): Abbott, TMC; Abdalla, FB; Alarcon, A; Allam, S; Annis, J; Avila, S; Aylor, K; Banerji, M; Banik, N; Baxter, EJ; Bechtol, K; Becker, MR; Benson, BA; Bernstein, GM; Bertin, E; Bianchini, F; Blazek, J; Bleem, LE; Bridle, SL; Brooks, D; Buckley-Geer, E; Burke, DL; Carlstrom, JE; Rosell, A Carnero; Kind, M Carrasco; Carretero, J; Castander, FJ; Cawthon, R; Chang, C; Chang, CL; Cho, H-M; Choi, A; Chown, R; Crawford, TM; Crites, AT; Crocce, M; Cunha, CE; D'Andrea, CB; da Costa, LN; Davis, C; de Haan, T; DeRose, J; Desai, S; De Vicente, J; Diehl, HT; Dietrich, JP; Dobbs, MA; Dodelson, S; Doel, P; Drlica-Wagner, A; Eifler, TF; Elvin-Poole, J; Everett, WB; Flaugher, B; Fosalba, P; Friedrich, O; Frieman, J; Garcia-Bellido, J; Gatti, M; Gaztanaga, E; George, EM; Gerdes, DW; Giannantonio, T; Gruen, D; Gruendl, RA; Gschwend, J; Gutierrez, G; Halverson, NW; Harrington, NL; Hartley, WG; Holder, GP; Hollowood, DL; Holzapfel, WL; Honscheid, K; Hou, Z; Hoyle, B; Hrubes, JD; Huterer, D; Jain, B; James, DJ; Jarvis, M; Jeltema, T; Johnson, MWG; Johnson, MD; Kent, S | Abstract: We perform a joint analysis of the auto and cross-correlations between three cosmic fields: the galaxy density field, the galaxy weak lensing shear field, and the cosmic microwave background (CMB) weak lensing convergence field. These three fields are measured using roughly 1300 sq. deg. of overlapping optical imaging data from first year observations of the Dark Energy Survey and millimeter-wave observations of the CMB from both the South Pole Telescope Sunyaev-Zel'dovich survey and Planck. We present cosmological constraints from the joint analysis of the two-point correlation functions between galaxy density and galaxy shear with CMB lensing. We test for consistency between these measurements and the DES-only two-point function measurements, finding no evidence for inconsistency in the context of flat $\Lambda$CDM cosmological models. Performing a joint analysis of five of the possible correlation functions between these fields (excluding only the CMB lensing autospectrum) yields $S_{8}\equiv \sigma_8\sqrt{\Omega_{\rm m}/0.3} = 0.782^{+0.019}_{-0.025}$ and $\Omega_{\rm m}=0.260^{+0.029}_{-0.019}$. We test for consistency between these five correlation function measurements and the Planck-only measurement of the CMB lensing autospectrum, again finding no evidence for inconsistency in the context of flat $\Lambda$CDM models. Combining constraints from all six two-point functions yields $S_{8}=0.776^{+0.014}_{-0.021}$ and $\Omega_{\rm m}= 0.271^{+0.022}_{-0.016}$. These results provide a powerful test and confirmation of the results from the first year DES joint-probes analysis.

J. E. Ruhl | Z. Staniszewski | J. E. Carlstrom | Adrian T. Lee | B. Yanny | E. M. Leitch | C. B. D'Andrea | A. Roodman | C. L. Reichardt | L. M. Mocanu | E. M. George | B. A. Benson | L. E. Bleem | T. M. Crawford | A. T. Crites | N. W. Halverson | W. L. Holzapfel | D. P. Marrone | J. J. McMahon | S. S. Meyer | T. Natoli | S. Padin | J. T. Sayre | K. K. Schaffer | E. Shirokoff | J. D. Vieira | R. Williamson | D. W. Gerdes | D. J. James | K. Bechtol | M. Soares-Santos | H. T. Diehl | C. Pryke | E. Buckley-Geer | A. Choi | L. Knox | N. L. Harrington | G. P. Holder | G. Simard | K. Vanderlinde | K. T. Story | D. Luong-Van | K. Honscheid | F. Menanteau | D. Brooks | J. Gschwend | G. Tarle | J. Prat | A. Manzotti | E. Bertin | R. A. Gruendl | T. M. C. Abbott | G. M. Bernstein | A. Drlica-Wagner | A. K. Romer | I. Sevilla-Noarbe | J. D. Hrubes | O. Zahn | M. Banerji | A. Carnero Rosell | L. N. da Costa | S. Desai | P. Doel | T. F. Eifler | J. Frieman | D. Gruen | K. Kuehn | O. Lahav | M. A. G. Maia | J. L. Marshall | P. Martini | B. Nord | A. A. Plazas | E. Sanchez | V. Scarpine | F. Sobreira | E. Suchyta | M. E. C. Swanson | B. Flaugher | H-M. Cho | R. H. Wechsler | M. R. Becker | F. B. Abdalla | J. Zuntz | J. P. Dietrich | F. J. Castander | P. Fosalba | R. Miquel | T. Giannantonio | M. A. Troxel | J. De Vicente | J. Annis | F. Bianchini | M. Jarvis | N. MacCrann | L. F. Secco | M. Carrasco Kind | J. Carretero | G. Gutierrez | D. L. Hollowood | S. Serrano | A. R. Walker | S. Dodelson | T. Jeltema | M. D. Johnson | S. Allam | M. Crocce | V. Vikram | Y. Zhang | H. Lin | M. Smith | D. Thomas | A. Nicola | D. Gerdes | J. Frieman | O. Lahav | F. Castander | P. Fosalba | J. Weller | F. Abdalla | J. Mohr | D. Kirk | A. Rosell | L. Costa | K. Honscheid | M. Maia | A. Ross | E. Rykoff | F. Sobreira | M. Swanson | S. Bridle | S. Meyer | G. Bernstein | A. Lee | J. Ruhl | M. Banerji | E. Rozo | D. Tucker | W. Everett | B. Benson | J. Carlstrom | T. Haan | M. Dobbs | N. Halverson | N. Harrington | W. Holzapfel | T. Natoli | S. Padin | J. Sayre | E. Shirokoff | A. Stark | K. Story | K. Vanderlinde | J. Vieira | M. Kind | R. Gruendl | W. Hartley | J. Annis | S. Allam | J. DeRose | H. Diehl | J. Gschwend | I. Sevilla-Noarbe | R. Wechsler | T. Abbott | S. Ávila | K. Bechtol | E. Bertin | D. Brooks | E. Buckley-Geer | D. Burke | J. Carretero | M. Crocce | C. Cunha | C. D'Andrea | C. Davis | S. Desai | P. Doel | A. Drlica-Wagner | T. Eifler | B. Flaugher | E. Gaztañaga | D. Gruen | G. Gutiérrez | D. Hollowood | B. Hoyle | D. James | T. Jeltema | K. Kuehn | M. Lima | F. Menanteau | R. Miquel | A. Plazas | A. Romer | V. Scarpine | S. Serrano | M. Smith | E. Suchyta | G. Tarlé | A. Walker | J. Zuntz | E. Sheldon | B. Yanny | M. Soares-Santos | J. Garc'ia-Bellido | M. Johnson | E. Krause | E. Sánchez | J. Blazek | J. Dietrich | S. Dodelson | T. Giannantonio | B. Jain | P. Martini | B. Nord | D. Thomas | V. Vikram | Y. Zhang | J. Muir | L. Secco | S. Kent | M. Troxel | S. Bridle | J. Vicente | D. Huterer | N. MacCrann | A. Nicola | M. Rau | A. Manzotti | O. Zahn | L. Knox | Z. Hou | M. Jarvis | O. Friedrich | D. Marrone | M. Lima | R. Cawthon | K. Schaffer | C. Reichardt | L. Bleem | H. Cho | T. Crawford | A. Crites | E. George | G. Holder | J. Hrubeš | E. Leitch | D. Luong-Van | J. McMahon | C. Pryke | Z. Staniszewski | R. Williamson | L. Mocanu | F. Bianchini | W. L. K. Wu | M. Becker | N. Banik | J. Prat | A. Alarcon | A. Choi | C. S'anchez | E. Baxter | J. Elvin-Poole | M. Gatti | R. Rollins | S. Samuroff | M. Troxel | P. Vielzeuf | Y. Omori | G. Simard | D. L. Burke | C. L. Chang | C. E. Cunha | C. Davis | E. Gaztanaga | W. G. Hartley | B. Hoyle | B. Jain | M. W. G. Johnson | E. Krause | M. Lima | J. J. Mohr | A. J. Ross | E. Rozo | E. S. Rykoff | J. Weller | D. Kirk | T. de Haan | M. A. Dobbs | A. T. Lee | A. A. Stark | C. Chang | E. Sheldon | S. Kent | Z. Hou | D. Huterer | J. DeRose | S. Avila | J. Blazek | R. Cawthon | J. Garc'ia-Bellido | T. S. Li | R. P. Rollins | D. L. Tucker | A. Alarcon | N. Banik | J. Elvin-Poole | O. Friedrich | M. Gatti | N. Kokron | J. Muir | A. Porredon | M. M. Rau | S. Samuroff | C. S'anchez | P. Vielzeuf | K. Aylor | S. Pandey | S. L. Bridle | R. Chown | Y. Omori | K. Aylor | E. J. Baxter | L. Bleem | R. Chown | W. B. Everett | S. Pandey | N. Kokron | M. C. Kind | A. C. Rosell | A. Porredon | A. Roodman | L. Costa | J. Marshall | C. Chang | Z. Staniszewski | M. Johnson | H. Lin | T. Li | H. Lin | T. Li | M. Johnson | Tian Li | C. Pryke | B. Benson | D. Thomas | M. Swanson | S. Pandey | H.-M. Cho | M. Dobbs | T. Abbott | D. Gerdes | D. James | J. Marshall | R. Miquel | K. Aylor | Huan Lin | S. Meyer | J. J. Mohr | L. Knox | C. Sánchez | Michael D. Johnson | J. García-Bellido | A. Walker | A. Stark | K. Honscheid | Yuanyuan Zhang | B. Jain | N. Banik | G. Bernstein | C. Davis | P. Doel | S. Kent | A. Manzotti | M. Smith | G. Tarlé

[1]  A. Amara,et al.  Consistency tests in cosmology using relative entropy , 2018, Journal of Cosmology and Astroparticle Physics.

[2]  B. Yanny,et al.  Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing , 2017, Physical Review D.

[3]  P. A. R. Ade,et al.  SPT-3G: a next-generation cosmic microwave background polarization experiment on the South Pole telescope , 2014, Astronomical Telescopes and Instrumentation.

[4]  P. A. R. Ade,et al.  A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND GRAVITATIONAL LENSING POTENTIAL FROM 100 SQUARE DEGREES OF SPTPOL DATA , 2014, 1412.4760.

[5]  S. Ferraro,et al.  Foreground-Immune Cosmic Microwave Background Lensing with Shear-Only Reconstruction. , 2018, Physical review letters.

[6]  C. B. Netterfield,et al.  Planck early results - I. The Planck mission , 2011, 1101.2022.

[7]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[8]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[9]  J.Lee,et al.  THE DARK ENERGY CAMERA , 2004, The Dark Energy Survey.

[10]  D. Gerdes,et al.  DES Y1 Results: validating cosmological parameter estimation using simulated Dark Energy Surveys , 2018, Monthly Notices of the Royal Astronomical Society.

[11]  D. Nelson Limber,et al.  The Analysis of Counts of the Extragalactic Nebulae in Terms of a Fluctuating Density Field. II , 1953 .

[12]  Adrian T. Lee,et al.  GALAXY CLUSTERS DISCOVERED VIA THE SUNYAEV–ZEL'DOVICH EFFECT IN THE 2500-SQUARE-DEGREE SPT-SZ SURVEY , 2014, 1409.0850.

[13]  O. Ilbert,et al.  The many flavours of photometric redshifts , 2018, Nature Astronomy.

[14]  James J. Bock,et al.  Planck Pre-Launch Status: The Planck Mission , 2010 .

[15]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[16]  The amplitude of mass fluctuations in the universe , 1993 .

[17]  N. E. Sommer,et al.  Dark Energy Survey Year 1 results: Cross-correlation redshifts - methods and systematics characterization , 2017, 1709.00992.

[18]  J. E. Ruhl,et al.  A 2500 deg2 CMB Lensing Map from Combined South Pole Telescope and Planck Data , 2017, 1705.00743.

[19]  G. P. Holder,et al.  CMB LENSING POWER SPECTRUM BIASES FROM GALAXIES AND CLUSTERS USING HIGH-ANGULAR RESOLUTION TEMPERATURE MAPS , 2013, 1310.7023.

[20]  N. E. Sommer,et al.  Dark Energy Survey Year 1 Results: redshift distributions of the weak-lensing source galaxies , 2017, Monthly Notices of the Royal Astronomical Society.

[21]  J. E. Carlstrom,et al.  Joint measurement of lensing–galaxy correlations using SPT and DES SV data , 2016, Monthly Notices of the Royal Astronomical Society.

[22]  P. Alam ‘Z’ , 2021, Composites Engineering: An A–Z Guide.

[23]  K. Ganga,et al.  Cosmological constraints from a joint analysis of cosmic microwave background and spectroscopic tracers of the large-scale structure , 2017, Monthly Notices of the Royal Astronomical Society.

[24]  Yannick Mellier,et al.  CFHTLenS: combined probe cosmological model comparison using 2D weak gravitational lensing , 2012, 1212.3338.

[25]  David N. Spergel,et al.  Two-season Atacama Cosmology Telescope polarimeter lensing power spectrum , 2017 .

[26]  P. Alam ‘N’ , 2021, Composites Engineering: An A–Z Guide.

[27]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[28]  L. M. M.-T. Theory of Probability , 1929, Nature.

[29]  Edward J. Wollack,et al.  Detection of the power spectrum of cosmic microwave background lensing by the Atacama Cosmology Telescope. , 2011, Physical review letters.

[30]  C. A. Oxborrow,et al.  Planck 2015 results. XV. Gravitational lensing , 2015, 1502.01591.

[31]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[32]  P. Alam ‘G’ , 2021, Composites Engineering: An A–Z Guide.

[33]  P. Alam ‘K’ , 2021, Composites Engineering.

[34]  P. Alam,et al.  H , 1887, High Explosives, Propellants, Pyrotechnics.

[35]  Sarah Bridle,et al.  Dark energy constraints from cosmic shear power spectra: impact of intrinsic alignments on photometric redshift requirements , 2007, 0705.0166.

[36]  J. E. Ruhl,et al.  Constraints on Cosmological Parameters from the Angular Power Spectrum of a Combined 2500 deg2 SPT-SZ and Planck Gravitational Lensing Map , 2017, The Astrophysical Journal.

[37]  P. Alam ‘T’ , 2021, Composites Engineering: An A–Z Guide.

[38]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[39]  P. Schneider,et al.  KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing , 2016, 1606.05338.

[40]  A. Lewis,et al.  Weak gravitational lensing of the CMB , 2006, astro-ph/0601594.

[41]  N. E. Sommer,et al.  Dark Energy Survey year 1 results: Galaxy clustering for combined probes , 2017, Physical Review D.

[42]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[43]  Wayne Hu,et al.  Cosmic microwave background lensing reconstruction on the full sky , 2003 .

[44]  S. Nissanke,et al.  Prospects for Resolving the Hubble Constant Tension with Standard Sirens. , 2018, Physical review letters.

[45]  Scott Dodelson,et al.  A unified analysis of four cosmic shear surveys , 2018, Monthly Notices of the Royal Astronomical Society.

[46]  Rachel Mandelbaum,et al.  Weak Lensing for Precision Cosmology , 2017, Annual Review of Astronomy and Astrophysics.

[47]  R. Nichol,et al.  Dark Energy Survey year 1 results: Galaxy-galaxy lensing , 2017, Physical Review D.

[48]  D. Gerdes,et al.  Withdrawn as Duplicate: Survey geometry and the internal consistency of recent cosmic shear measurements , 2018, Monthly Notices of the Royal Astronomical Society: Letters.

[49]  R. Nichol,et al.  redMaGiC: selecting luminous red galaxies from the DES Science Verification data , 2015, 1507.05460.

[50]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[51]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.

[52]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.

[53]  C. B. D'Andrea,et al.  Dark Energy Survey Year 1 results: weak lensing shape catalogues , 2017, Monthly Notices of the Royal Astronomical Society.

[54]  D. Hanson,et al.  Extragalactic foreground contamination in temperature-based CMB lens reconstruction , 2013, 1310.7547.

[55]  Mathew S. Madhavacheril,et al.  Mitigating foreground biases in CMB lensing reconstruction using cleaned gradients , 2018, Physical Review D.

[56]  R. Nichol,et al.  Cross-correlation of gravitational lensing from DES Science Verification data with SPT and Planck lensing , 2015, 1512.04535.

[57]  P. Schneider,et al.  Detection of correlated galaxy ellipticities on CFHT data: first evidence for gravitational lensing by large-scale structures , 2000, astro-ph/0002500.

[58]  D. Gerdes,et al.  Dark Energy Survey Year 1 Results: calibration of redMaGiC redshift distributions in DES and SDSS from cross-correlations , 2017, Monthly Notices of the Royal Astronomical Society.

[59]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[60]  P. Schneider,et al.  Why your model parameter confidences might be too optimistic - unbiased estimation of the inverse covariance matrix , 2006, astro-ph/0608064.

[61]  David M. Wittman,et al.  Detection of weak gravitational lensing distortions of distant galaxies by cosmic dark matter at large scales , 2000, Nature.

[62]  B. Yanny,et al.  Dark Energy Survey Year 1 Results: The Photometric Data Set for Cosmology , 2017, 1708.01531.

[63]  Cambridge,et al.  Detection of weak gravitational lensing by large-scale structure , 2000 .

[64]  E. Leitch,et al.  SPTpol: an instrument for CMB polarization measurements with the South Pole Telescope , 2012, Other Conferences.

[65]  Edward J. Wollack,et al.  OVERVIEW OF THE ATACAMA COSMOLOGY TELESCOPE: RECEIVER, INSTRUMENTATION, AND TELESCOPE SYSTEMS , 2010, 1007.0290.

[66]  MON , 2020, Catalysis from A to Z.

[67]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[68]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[69]  David B. Dunson,et al.  Bayesian data analysis, third edition , 2013 .

[70]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[71]  Erin S. Sheldon,et al.  Practical Weak-lensing Shear Measurement with Metacalibration , 2017, 1702.02601.

[72]  Edward J. Wollack,et al.  Advanced ACTPol Cryogenic Detector Arrays and Readout , 2015, 1510.02809.

[73]  N. Afshordi,et al.  Extended Limber Approximation , 2008, 0809.5112.

[74]  Brian Keating,et al.  The Simons Observatory: instrument overview , 2018, Astronomical Telescopes + Instrumentation.

[75]  David N. Spergel,et al.  THE ATACAMA COSMOLOGY TELESCOPE: LENSING OF CMB TEMPERATURE AND POLARIZATION DERIVED FROM COSMIC INFRARED BACKGROUND CROSS-CORRELATION , 2014, 1412.0626.

[76]  Nutan Rajguru,et al.  Bayesian evidence as a tool for comparing datasets , 2006 .

[77]  Adrian T. Lee,et al.  The 10 Meter South Pole Telescope , 2009, 0907.4445.

[78]  R. Nichol,et al.  Dark Energy Survey Year 1 results: Cosmological constraints from cosmic shear , 2017, Physical Review D.

[79]  Wayne Hu,et al.  Concordance and discordance in cosmology , 2018, Physical Review D.

[80]  Adam Amara,et al.  Integrated approach to cosmology: Combining CMB, large-scale structure and weak lensing , 2016, 1607.01014.

[81]  C. B. D'Andrea,et al.  Dark Energy Survey Year 1 results: Methodology and projections for joint analysis of galaxy clustering, galaxy lensing, and CMB lensing two-point functions , 2018, Physical Review D.

[82]  J. Hill,et al.  Bias to CMB lensing reconstruction from temperature anisotropies due to large-scale galaxy motions , 2017, 1705.06751.

[83]  N. Benı́tez Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.

[84]  Adrian T. Lee,et al.  A MEASUREMENT OF GRAVITATIONAL LENSING OF THE MICROWAVE BACKGROUND USING SOUTH POLE TELESCOPE DATA , 2012, 1202.0546.

[85]  J. E. Carlstrom,et al.  CMB lensing tomography with the DES Science Verification galaxies , 2015, Monthly Notices of the Royal Astronomical Society.

[86]  P. Alam ‘O’ , 2021, Composites Engineering: An A–Z Guide.