Semisymmetric graphs of order 2p3
暂无分享,去创建一个
Li Wang | Shao-Fei Du | Shao-Fei Du | Li Wang
[1] Yan-Quan Feng,et al. Cubic symmetric graphs of order a small number times a prime or a prime square , 2007, J. Comb. Theory, Ser. B.
[2] M. Conder,et al. A census of semisymmetric cubic graphs on up to 768 vertices , 2006 .
[3] Dragan Marusic,et al. Semisymmetric elementary abelian covers of the Möbius-Kantor graph , 2005, Discret. Math..
[4] R. Guralnick. Subgroups of prime power index in a simple group , 1983 .
[5] Mingyao Xu,et al. On semisymmetric cubic graphs of order 6p2 , 2004 .
[6] J. Folkman. Regular line-symmetric graphs , 1967 .
[7] David M. Bloom,et al. The subgroups of ${\rm PSL}(3,\,q)$ for odd $q$ , 1967 .
[8] Steve Wilson,et al. A worthy family of semisymmetric graphs , 2003, Discret. Math..
[9] D. Marusic,et al. Biprimitive Graphs of Smallest Order , 1999 .
[10] Dragan Marusic,et al. An infinite family of biprimitive semisymmetric graphs , 1999, J. Graph Theory.
[11] I. Bouwer. An Edge but not Vertex Transitive Cubic Graph* , 1968, Canadian Mathematical Bulletin.
[12] Lin Zhang,et al. An infinite family of semisymmetric graphs constructed from affine geometries , 2003, Eur. J. Comb..
[13] I. Z. Bouwer. On edge but not vertex transitive regular graphs , 1972 .
[14] H. Weyl. Permutation Groups , 2022 .
[15] C. W. Parker,et al. Semisymmetric cubic graphs of twice odd order , 2004, Eur. J. Comb..
[16] Edward Dobson,et al. Transitive Permutation Groups of Prime-Squared Degree , 2000, math/0012192.
[17] B. Huppert. Endliche Gruppen I , 1967 .
[18] Ming-Yao Xu,et al. A classification of semisymmetric graphs of order 2pq , 2000 .
[19] Aleksander Malnič,et al. Cubic edge-transitive graphs of order 2p3 , 2004, Discret. Math..
[20] J. Kwak,et al. Groups PSL(3, p) and nonorientable regular maps , 2009 .
[21] A. V. Ivanov,et al. On Edge but not Vertex Transitive Regular Graphs , 1987 .
[22] Felix Lazebnik,et al. An infinite series of regular edge‐ but not vertex‐transitive graphs , 2002, J. Graph Theory.
[23] Xuewen Li,et al. A class of semisymmetric graphs , 2014, Ars Math. Contemp..