Analysis of a Waveguide-Fed Metasurface Antenna

The metasurface concept has emerged as an advantageous reconfigurable antenna architecture for beam forming and wavefront shaping, with applications that include satellite and terrestrial communications, radar, imaging, and wireless power transfer. The metasurface antenna consists of an array of metamaterial elements distributed over an electrically large structure, each subwavelength in dimension and with subwavelength separation between elements. In the antenna configuration we consider here, the metasurface is excited by the fields from an attached waveguide. Each metamaterial element can be modeled as a polarizable dipole that couples the waveguide mode to radiation modes. Distinct from the phased array and electronically scanned antenna (ESA) architectures, a dynamic metasurface antenna does not require active phase shifters and amplifiers, but rather achieves reconfigurability by shifting the resonance frequency of each individual metamaterial element. Here we derive the basic properties of a one-dimensional waveguide-fed metasurface antenna in the approximation that the metamaterial elements do not perturb the waveguide mode and are non-interacting. We derive analytical approximations for the array factors of the 1D antenna, including the effective polarizabilities needed for amplitude-only, phase-only, and binary constraints. Using full-wave numerical simulations, we confirm the analysis, modeling waveguides with slots or complementary metamaterial elements patterned into one of the surfaces.

[1]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[2]  Riyaz Pathan,et al.  Design of slotted waveguide antennas with low sidelobes for high power microwave applications , 2018 .

[3]  David R. Smith,et al.  Polarizability extraction of complementary metamaterial elements in waveguides for aperture modeling , 2017 .

[4]  Thomas Fromenteze,et al.  Frequency-Diverse Computational Microwave Phaseless Imaging , 2017, IEEE Antennas and Wireless Propagation Letters.

[5]  David R. Smith,et al.  Dual-Polarization Printed Holographic Multibeam Metasurface Antenna , 2017, IEEE Antennas and Wireless Propagation Letters.

[6]  Thomas Fromenteze,et al.  Computational polarimetric microwave imaging. , 2017, Optics express.

[7]  Polarizability Extraction for Waveguide-Fed Metasurfaces , 2017, 1708.05061.

[8]  Thomas Fromenteze,et al.  Millimeter-wave spotlight imager using dynamic holographic metasurface antennas. , 2017, Optics express.

[9]  David R. Smith,et al.  Computational polarimetric localization with a radiating metasurface , 2017, 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting.

[10]  David R. Smith,et al.  Design and Analysis of a Reconfigurable Holographic Metasurface Aperture for Dynamic Focusing in the Fresnel Zone , 2017, IEEE Access.

[11]  Stefano Maci,et al.  Surface Wave Dispersion for a Tunable Grounded Liquid Crystal Substrate Without and With Metasurface on Top , 2017, IEEE Transactions on Antennas and Propagation.

[12]  Thomas Fromenteze,et al.  Synthetic aperture radar with dynamic metasurface antennas: a conceptual development. , 2017, Journal of the Optical Society of America. A, Optics, image science, and vision.

[13]  David R. Smith,et al.  Cavity-backed metasurface antennas and their application to frequency diversity imaging. , 2017, Journal of the Optical Society of America. A, Optics, image science, and vision.

[14]  Thomas Fromenteze,et al.  Experimental Synthetic Aperture Radar With Dynamic Metasurfaces , 2017, IEEE Transactions on Antennas and Propagation.

[15]  David R. Smith,et al.  Large Metasurface Aperture for Millimeter Wave Computational Imaging at the Human-Scale , 2017, Scientific Reports.

[16]  Matthew S. Reynolds,et al.  X-band SAR imaging with a liquid-crystal-based dynamic metasurface antenna , 2017 .

[17]  Ieee Staff 2017 IEEE International Symposium on Antennas and Propagation and USNC URSI National Radio Science Meeting , 2017 .

[18]  Matthew S. Reynolds,et al.  An analysis of beamed wireless power transfer in the Fresnel zone using a dynamic, metasurface aperture , 2016, 1610.06799.

[19]  Thomas Fromenteze,et al.  Application of range migration algorithms to imaging with a dynamic metasurface antenna , 2016 .

[20]  Eli Brookner,et al.  Metamaterial advances for radar and communications , 2016, 2016 IEEE International Symposium on Phased Array Systems and Technology (PAST).

[21]  N. Kundtz,et al.  Metamaterial surface antenna technology: Commercialization through diffractive metamaterials and liquid crystal display manufacturing , 2016, 2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS).

[22]  David R. Smith,et al.  Design and Simulation of a Frequency-Diverse Aperture for Imaging of Human-Scale Targets , 2016, IEEE Access.

[23]  David R. Smith,et al.  Phase and magnitude constrained metasurface holography at W-band frequencies. , 2016, Optics express.

[24]  Marco Sabbadini,et al.  Synthesis of Modulated-Metasurface Antennas With Amplitude, Phase, and Polarization Control , 2016, IEEE Transactions on Antennas and Propagation.

[25]  S. Tretyakov,et al.  Metasurfaces: From microwaves to visible , 2016 .

[26]  Jose Luis Gomez-Tornero,et al.  Design of Ku-band wireless power transfer system to empower light drones , 2016, 2016 IEEE Wireless Power Transfer Conference (WPTC).

[27]  David R. Smith,et al.  Frequency-diverse microwave imaging using planar Mills-Cross cavity apertures. , 2016, Optics express.

[28]  David R. Smith,et al.  Discrete Dipole Approximation Applied to Highly Directive Slotted Waveguide Antennas , 2016, IEEE Antennas and Wireless Propagation Letters.

[29]  George V. Eleftheriades,et al.  Huygens' metasurfaces via the equivalence principle: design and applications , 2016 .

[30]  David R. Smith,et al.  Dynamic metamaterial aperture for microwave imaging , 2015 .

[31]  David R. Smith,et al.  Comprehensive simulation platform for a metamaterial imaging system. , 2015, Applied optics.

[32]  Guoxing Zheng,et al.  Metasurface holograms reaching 80% efficiency. , 2015, Nature nanotechnology.

[33]  Constantine A. Balanis,et al.  Design of Scalar Impedance Holographic Metasurfaces for Antenna Beam Formation With Desired Polarization , 2015, IEEE Transactions on Antennas and Propagation.

[34]  D. González-Ovejero,et al.  Modulated Metasurface Antennas for Space: Synthesis, Analysis and Realizations , 2015, IEEE Transactions on Antennas and Propagation.

[35]  P. Genevet,et al.  Holographic optical metasurfaces: a review of current progress , 2015, Reports on progress in physics. Physical Society.

[36]  S. Brunton,et al.  Sidelobe Canceling for Reconfigurable Holographic Metamaterial Antenna , 2014, IEEE Transactions on Antennas and Propagation.

[37]  M. Al‐Husseini,et al.  Design of Slotted Waveguide Antennas with Low Sidelobes for High Power Microwave Applications , 2015 .

[38]  Patrick Bowen,et al.  Discrete-dipole approximation model for control and optimization of a holographic metamaterial antenna. , 2014, Applied optics.

[39]  George V. Eleftheriades,et al.  Design of unit cells and demonstration of methods for synthesizing Huygens metasurfaces , 2014 .

[40]  Nathan Kundtz Next Generation Communications for Next Generation Satellites , 2014 .

[41]  David R. Smith,et al.  Homogenization analysis of complementary waveguide metamaterials , 2013 .

[42]  David R. Smith,et al.  Metamaterial apertures for coherent computational imaging on the physical layer. , 2013, Journal of the Optical Society of America. A, Optics, image science, and vision.

[43]  C. Pfeiffer,et al.  Cascaded metasurfaces for complete phase and polarization control , 2013 .

[44]  C. Pfeiffer,et al.  Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets. , 2013, Physical review letters.

[45]  D. Sievenpiper,et al.  Artificial Tensor Impedance Surface Waveguides , 2013, IEEE Transactions on Antennas and Propagation.

[46]  David R. Smith,et al.  Metamaterial Apertures for Computational Imaging , 2013, Science.

[47]  Ferran Martin,et al.  Broadband bandpass filter using open complementary split ring resonator based on metamaterial unit‐cell concept , 2012 .

[48]  Shulin Sun,et al.  Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. , 2012, Nature materials.

[49]  Wenping Tang,et al.  Synthesis, Simulation and Experiment of Unequally Spaced Resonant Slotted-Waveguide Antenna Arrays Based on the Infinite Wavelength Propagation Property of Composite Right/Left-Handed Waveguide , 2012, IEEE Transactions on Antennas and Propagation.

[50]  Kai Fong Lee,et al.  Microstrip Patch Antennas—Basic Characteristics and Some Recent Advances , 2012, Proceedings of the IEEE.

[51]  T. Karamanos,et al.  Polarizability Matrix Extraction of a Bianisotropic Metamaterial from the Scattering Parameters of Normally Incident Plane Waves , 2012 .

[52]  Tatsuo Itoh,et al.  Leaky-Wave Antennas , 2008, Proceedings of the IEEE.

[53]  P. Baccarelli IEEE Antennas and Wireless Propagation Letters , 2020, IEEE Antennas and Wireless Propagation Letters.

[54]  F. Caminita,et al.  Spiral Leaky-Wave Antennas Based on Modulated Surface Impedance , 2011, IEEE Transactions on Antennas and Propagation.

[55]  N. Engheta,et al.  Homogenization of plasmonic metasurfaces modeled as transmission-line loads , 2011 .

[56]  Amit M. Patel,et al.  A Printed Leaky-Wave Antenna Based on a Sinusoidally-Modulated Reactance Surface , 2011, IEEE Transactions on Antennas and Propagation.

[57]  S. Maci,et al.  Metasurfing: Addressing Waves on Impenetrable Metasurfaces , 2011, IEEE Antennas and Wireless Propagation Letters.

[58]  D. Sievenpiper,et al.  Scalar and Tensor Holographic Artificial Impedance Surfaces , 2010, IEEE Transactions on Antennas and Propagation.

[59]  Jong-Hoon Chun,et al.  A Novel Geometrical Technique for Determining Optimal Array Antenna Lattice Configuration , 2010, IEEE Transactions on Antennas and Propagation.

[60]  Edward F. Kuester,et al.  Extracting the bulk effective parameters of a metamaterial via the scattering from a single planar array of particles , 2009 .

[61]  David R. Smith,et al.  Characterization of complementary electric field coupled resonant surfaces , 2008 .

[62]  S. Tsimring Wiley Series in Microwave and Optical Engineering , 2006 .

[63]  A. Alvarez-Melcon,et al.  Design of tapered leaky-wave antennas in hybrid waveguide-planar technology for millimeter waveband applications , 2005, IEEE Transactions on Antennas and Propagation.

[64]  D. Sievenpiper,et al.  Forward and backward leaky wave radiation with large effective aperture from an electronically tunable textured surface , 2005, IEEE Transactions on Antennas and Propagation.

[65]  J. Bonache,et al.  Babinet principle applied to the design of metasurfaces and metamaterials. , 2004, Physical review letters.

[66]  Hyok J. Song,et al.  Two-dimensional beam steering using an electrically tunable impedance surface , 2003 .

[67]  D. Sievenpiper,et al.  A tunable impedance surface performing as a reconfigurable beam steering reflector , 2002 .

[68]  William P. Delaney,et al.  The Development of Phased-Array Radar Technology , 2000 .

[69]  Physical Review Letters 63 , 1989 .

[70]  M. Ando,et al.  A radial line slot antenna for 12 GHz satellite TV reception , 1985 .

[71]  B H Woodcock,et al.  Optical Holography: Principles, Techniques and Applications , 1987 .

[72]  P. Hariharan,et al.  Optical Holography: Principles, Techniques and Applications , 1987 .

[73]  F. K. Schwering,et al.  Design of Dielectric Grating Antennas for Millimeter-Wave Applications , 1983 .

[74]  Mario Orefice,et al.  Design of waveguide-fed series slot arrays , 1982 .

[75]  Arthur A. Oliner,et al.  Phased array antennas , 1972 .

[76]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[77]  J. Goodman Introduction to Fourier optics , 1969 .

[78]  Journal of the Optical Society of America , 1950, Nature.

[79]  A. F. Stevenson Theory of Slots in Rectangular Wave‐Guides , 1948 .