Chapter 4 – Color Vision

Publisher Summary Color vision is the ability to discriminate changes in the wavelength composition of a visual stimulus independently of its effective intensity. It is an ability that humankind shares with many other species, including insects, amphibians, reptiles, fish, and birds as well as other mammals. A complete physical description of the spectral composition of a stimulus requires specifying its location in a space of many dimensions. A human observer with normal color vision can provide a match for every possible test light by approximately combining and adjusting just three variable lights. This trichromatic limitation reflects a huge loss of information in the human visual system. Because color vision is trichromatic, all visible colors can be adequately represented in a three-dimensional space. There are an infinite number of possible spaces, and insofar as color mixing in the visual system is linear, any one space can be linearly transformed to any other. Thus, the characteristics of the space used can be selected for convenience or for their ability to represent more or less directly the processing stages in the neural color system. Several color spaces have been devised over the years.

[1]  D. M. Purdy,et al.  Spectral Hue as a Function of Intensity , 1931 .

[2]  M. Fahle,et al.  Why do isoluminant stimuli appear slower? , 1988, Journal of the Optical Society of America. A, Optics and image science.

[3]  R. Shapley,et al.  Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus , 1992, Nature.

[4]  K. Mullen The contrast sensitivity of human colour vision to red‐green and blue‐yellow chromatic gratings. , 1985, The Journal of physiology.

[5]  R. L. Valois,et al.  Analysis of response patterns of LGN cells. , 1966, Journal of the Optical Society of America.

[6]  D JAMESON,et al.  Some quantitative aspects of an opponent-colors theory. III. Changes in brightness, saturation, and hue with chromatic adaptation. , 1956, Journal of the Optical Society of America.

[7]  C. Stromeyer,et al.  Visual interactions with luminance and chromatic stimuli. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[8]  D. G. Albrecht,et al.  Spatial mapping of monkey VI cells with pure color and luminance stimuli , 1984, Vision Research.

[9]  P K Ahnelt,et al.  Identification of a subtype of cone photoreceptor, likely to be blue sensitive, in the human retina , 1987, The Journal of comparative neurology.

[10]  L. Spillmann,et al.  Assimilation: Asymmetry between brightness and darkness? , 1995, Vision Research.

[11]  T. Yoshioka,et al.  A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. , 1994, Science.

[12]  V C Smith,et al.  Temporal modulation sensitivity and pulse-detection thresholds for chromatic and luminance perturbations. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[13]  K. D. De Valois,et al.  Higher-Order Factors Influencing the Perception of Sliding and Coherence of a Plaid , 1992, Perception.

[14]  R. L. de Valois,et al.  Responses of Single Cells in Visual System to Shifts in the Wavelength of Light , 1964, Science.

[15]  J. J. Vos,et al.  On the derivation of the foveal receptor primaries. , 1971, Vision research.

[16]  A. Mariani A diffuse, invaginating cone bipolar cell in primate retina , 1981, The Journal of comparative neurology.

[17]  D. Baylor,et al.  Spectral sensitivity of cones of the monkey Macaca fascicularis. , 1987, The Journal of physiology.

[18]  R. L. Valois,et al.  Psychophysical studies of monkey vision. I. Macaque luminosity and color vision tests. , 1974, Vision research.

[19]  V. Casagrande,et al.  The distribution and morphology of LGN K pathway axons within the layers and CO blobs of owl monkey V1 , 1997, Visual Neuroscience.

[20]  R M Boynton,et al.  Uniqueness of perceived hues investigated with a continuous judgmental technique. , 1966, Journal of experimental psychology.

[21]  R M Boynton,et al.  Vision: The Additivity Law Made To Work for Heterochromatic Photometry with Bipartite Fields , 1968, Science.

[22]  Jay Neitz,et al.  Polymorphism in normal human color vision and its mechanism , 1990, Vision Research.

[23]  D. Jameson,et al.  Some Quantitative Aspects of an Opponent-Colors Theory. I. Chromatic Responses and Spectral Saturation , 1955 .

[24]  D JAMESON,et al.  Some quantitative aspects of an opponent-colors theory. IV. A psychological color specification system. , 1956, Journal of the Optical Society of America.

[25]  K. Mullen,et al.  Absence of Linear Subthreshold summation between Red-Green and Luminance Mechanisms over a Wide Range of Spatio-temporal Conditions , 1997, Vision Research.

[26]  B. Boycott,et al.  Horizontal Cells in the Monkey Retina: Cone connections and dendritic network , 1989, The European journal of neuroscience.

[27]  A. Milam,et al.  Distribution and morphology of human cone photoreceptors stained with anti‐blue opsin , 1991, The Journal of comparative neurology.

[28]  R. D. De Valois,et al.  Single cell analysis of saturation discrimination in the macaque. , 1973, Vision research.

[29]  I. G. Priest,et al.  The Minimum Perceptible Colorimetric Purity as a Function of Dominant Wave-Length* , 1938 .

[30]  V Virsu,et al.  Relationships between Channels for Colour and Spatial Frequency in Human Vision , 1973, Perception.

[31]  R. M. Boynton,et al.  Chromaticity diagram showing cone excitation by stimuli of equal luminance. , 1979, Journal of the Optical Society of America.

[32]  A. Mariani Bipolar cells in monkey retina selective for the cones likely to be blue-sensitive , 1984, Nature.

[33]  Paul R. Martin,et al.  Evidence that Blue‐on Cells are Part of the Third Geniculocortical Pathway in Primates , 1997, The European journal of neuroscience.

[34]  E Switkes,et al.  Simultaneous masking interactions between chromatic and luminance gratings. , 1983, Journal of the Optical Society of America.

[35]  D. Baylor,et al.  Spectral sensitivity of human cone photoreceptors , 1987, Nature.

[36]  I. Abramov Further analysis of the responses of LGN cells. , 1968, Journal of the Optical Society of America.

[37]  M. A. Bouman,et al.  Spatiotemporal chromaticity discrimination. , 1969, Journal of the Optical Society of America.

[38]  S. Zeki,et al.  Colour coding in rhesus monkey prestriate cortex. , 1973, Brain research.

[39]  J. Werner,et al.  Effect of chromatic adaptation on the achromatic locus: The role of contrast, luminance and background color , 1982, Vision Research.

[40]  A. Valberg,et al.  Simulation of responses of spectrally-opponent neurones in the macaque lateral geniculate nucleus to chromatic and achromatic light stimuli , 1987, Vision Research.

[41]  J S Werner,et al.  Opponent chromatic mechanisms: relation to photopigments and hue naming. , 1979, Journal of the Optical Society of America.

[42]  M. A. Bouman,et al.  Transfer of spatial chromaticity-contrast at threshold in the human eye. , 1967, Journal of the Optical Society of America.

[43]  A Bradley,et al.  Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings. , 1988, Journal of the Optical Society of America. A, Optics and image science.

[44]  Thomas Young,et al.  II. The Bakerian Lecture. On the theory of light and colours , 1802, Philosophical Transactions of the Royal Society of London.

[45]  D. H. Kelly Spatiotemporal variation of chromatic and achromatic contrast thresholds. , 1983, Journal of the Optical Society of America.

[46]  R. Harwerth,et al.  Red-Green Cone Interactions in the Increment-Threshold Spectral Sensitivity of Primates , 1971, Science.

[47]  D. Jameson,et al.  Some quantitative aspects of an opponent-colors theory. II. Brightness, saturation, and hue in normal and dichromatic vision. , 1955, Journal of the Optical Society of America.

[48]  A Pantle,et al.  Size-Detecting Mechanisms in Human Vision , 1968, Science.

[49]  G H Jacobs,et al.  Spectral tuning of pigments underlying red-green color vision. , 1991, Science.

[50]  R. L. Valois,et al.  Hue Scaling of Isoluminant and Cone-specific Lights , 1997, Vision Research.

[51]  P. Lennie,et al.  Chromatic mechanisms in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[52]  G. Wyszecki,et al.  Luminosity functions for various field sizes and levels of retinal illuminance. , 1958, Journal of the Optical Society of America.

[53]  Peter H. Schiller,et al.  Lack of blue OFF-center cells in the visual system of the monkey , 1978, Brain Research.

[54]  Barry B. Lee,et al.  Neurones with strong inhibitory s-cone inputs in the macaque lateral geniculate nucleus , 1986, Vision Research.

[55]  James Clerk Maxwell,et al.  On the theory of compound colours, and the relations of the colours of the spectrum , 1860, Proceedings of the Royal Society of London.

[56]  J. C. Meadows Disturbed perception of colours associated with localized cerebral lesions. , 1974, Brain : a journal of neurology.

[57]  H. Kolb,et al.  Horizontal cells and cone photoreceptors in human retina: A Golgi‐electron microscopic study of spectral connectivity , 1994, The Journal of comparative neurology.

[58]  J. Pokorny,et al.  Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm , 1975, Vision Research.

[59]  C Blakemore,et al.  On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images , 1969, The Journal of physiology.

[60]  S. L. Guth Nonadditivity and inhibition among chromatic luminances at threshold. , 1967, Vision research.

[61]  B. B. Lee,et al.  The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina. , 1988, The Journal of physiology.

[62]  R. L. Valois Analysis and coding of color vision in the primate visual system. , 1965 .

[63]  E. M. Granger,et al.  Visual chromaticity-modulation transfer function , 1973 .

[64]  Barry B. Lee,et al.  The 'blue-on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type , 1994, Nature.

[65]  R. L. Valois,et al.  A multi-stage color model , 1993, Vision Research.

[66]  R. W. Rodieck,et al.  Parasol and midget ganglion cells of the human retina , 1985, The Journal of comparative neurology.

[67]  D. Teller,et al.  Motion at isoluminance: motion dead zones in three-dimensional color space. , 1993, Journal of the Optical Society of America. A, Optics and image science.

[68]  K. D. De Valois,et al.  Orientation and spatial-frequency discrimination for luminance and chromatic gratings. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[69]  F. M. D. Monasterio Asymmetry of on- and off-pathways of blue-sensitive cones of the retina of macaques , 1979, Brain Research.

[70]  D. Baylor,et al.  Spectral sensitivity of primate photoreceptors , 1988, Visual Neuroscience.

[71]  Arthur Bradley,et al.  Orientation and spatial frequency selectivity of adaptation to color and luminance gratings , 1988, Vision Research.

[72]  C. Cavonius,et al.  Contrast sensitivity of individual colour mechanisms of human vision. , 1975, The Journal of physiology.

[73]  P. H. Schiller,et al.  The effects of V4 and middle temporal (MT) area lesions on visual performance in the rhesus monkey , 1993, Visual Neuroscience.

[74]  Hermann Grassmann,et al.  Zur Theorie der Farbenmischung , 1853 .

[75]  R. L. Valois,et al.  Temporal dynamics of chromatic tuning in macaque primary visual cortex , 1998, Nature.

[76]  A. Hendrickson,et al.  Human photoreceptor topography , 1990, The Journal of comparative neurology.

[77]  Peter K. Kaiser,et al.  Sensation luminance: A new name to distinguish CIE luminance from luminance dependent on an individual's spectral sensitivity , 1988, Vision Research.

[78]  J. Nathans,et al.  Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. , 1986, Science.

[79]  E. V. Famiglietti,et al.  Structural basis for ON-and OFF-center responses in retinal ganglion cells. , 1976, Science.

[80]  K. Mullen,et al.  Red-green and achromatic temporal filters: a ratio model predicts contrast-dependent speed perception. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[81]  Robert M. Boynton,et al.  Bezold–Brücke Hue Shift Measured by Color-Naming Technique* , 1965 .

[82]  O E Favreau,et al.  Perceived velocity of moving chromatic gratings. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[83]  A. S. Gilinsky Orientation-specific effects of patterns of adapting light on visual acuity. , 1968, Journal of the Optical Society of America.

[84]  L. Sharpe,et al.  Assimilative hue shifts in color depend on bar width , 1986 .

[85]  Paul R. Martin,et al.  Immunocytochemical characterization and spatial distribution of midget bipolar cells in the macaque monkey retina , 1994, Vision Research.

[86]  D. G. Green Visual acuity in the blue cone monochromat , 1972, The Journal of physiology.

[87]  Graeme R. Cole,et al.  Computation of cone contrasts for color vision research , 1992 .

[88]  A L Nagy,et al.  Four cone pigments in women heterozygous for color deficiency. , 1981, Journal of the Optical Society of America.