The effects of initial temperature and pressure on the mechanical properties of reinforced calcium phosphate cement with magnesium nanoparticles: A molecular dynamics approach

[1]  D. Toghraie,et al.  The computational investigation of thermal conductivity of 11S globulin protein for biological applications: Molecular dynamics simulation , 2022, Journal of Molecular Liquids.

[2]  D. Toghraie,et al.  Investigation of the effect of Berkovich and Cube Corner indentations on the mechanical behavior of fused silica using molecular dynamics and finite element simulation , 2021, Ceramics International.

[3]  D. Toghraie,et al.  Combustion process of nanofluids consisting of oxygen molecules and aluminum nanoparticles in a copper nanochannel using molecular dynamics simulation , 2021, Case Studies in Thermal Engineering.

[4]  D. Toghraie,et al.  The computational study of moisture effect on mechanical behavior of baghdadite matrix via molecular dynamics approach , 2021, Journal of Materials Research and Technology.

[5]  D. Toghraie,et al.  The improvement of mechanical properties of conventional concretes using carbon nanoparticles using molecular dynamics simulation , 2021, Scientific Reports.

[6]  P. Baglioni,et al.  Exploring the effect of Mg2+ substitution on amorphous calcium phosphate nanoparticles. , 2021, Journal of colloid and interface science.

[7]  D. Toghraie,et al.  Molecular dynamics simulation of water-based Ferro-nanofluid flow in the microchannel and nanochannel: Effects of number of layers and material of walls , 2021 .

[8]  D. Toghraie,et al.  Evaluation the vibrational behavior of carbon nanotubes in different sizes and chiralities and argon flows at supersonic velocity using molecular dynamics simulation , 2021 .

[9]  M. Afrand,et al.  Preparation of stable TiO2-Graphene/Water hybrid nanofluids and development of a new correlation for thermal conductivity , 2021 .

[10]  Hong Chen,et al.  Developing a novel magnesium calcium phosphate/sodium alginate composite cement with high strength and proper self-setting time for bone repair , 2021, Journal of biomaterials applications.

[11]  D. Toghraie,et al.  Mechanical and thermal stability of armchair and zig-zag carbon sheets using classical MD simulation with Tersoff potential , 2021 .

[12]  Changshun Ruan,et al.  Hyaluronic acid facilitates bone repair effects of calcium phosphate cement by accelerating osteogenic expression , 2021, Bioactive materials.

[13]  Z. Deng,et al.  Magnesium-based biomaterials as emerging agents for bone repair and regeneration: from mechanism to application , 2021, Journal of Magnesium and Alloys.

[14]  D. Toghraie,et al.  The molecular dynamics study of boron-nitride nanosheet roughness after atomic bombardment process , 2021, Journal of Molecular Liquids.

[15]  M. Karimian,et al.  Improving the mechanical properties of strontium nitrate doped dicalcium phosphate cement nanoparticles for bone repair application , 2021, Ceramics International.

[16]  D. Toghraie,et al.  Investigation of dynamical behavior of 3LPT protein - water molecules interactions in atomic structures using molecular dynamics simulation , 2021 .

[17]  Liping Wang,et al.  A novel magnesium ion-incorporating dual-crosslinked hydrogel to improve bone scaffold-mediated osteogenesis and angiogenesis. , 2021, Materials science & engineering. C, Materials for biological applications.

[18]  Jer Ping Ooi,et al.  Biocompatible magnesium-doped biphasic calcium phosphate for bone regeneration. , 2021, Journal of biomedical materials research. Part B, Applied biomaterials.

[19]  Q. Bach,et al.  Thermal and hydrodynamic properties of coronavirus at various temperature and pressure via molecular dynamics approach , 2020, Journal of Thermal Analysis and Calorimetry.

[20]  Q. Bach,et al.  Investigation of additives nanoparticles and sphere barriers effects on the fluid flow inside a nanochannel impressed by an extrinsic electric field: A molecular dynamics simulation , 2020 .

[21]  R. Azimi,et al.  Mechanical properties improvement and bone regeneration of calcium phosphate bone cement, Polymethyl methacrylate and glass ionomer , 2020 .

[22]  D. Toghraie,et al.  Atomic interactions between rock substrate and water-sand mixture with and without graphene nanosheets via molecular dynamics simulation , 2020 .

[23]  J. Malda,et al.  Stable and Antibacterial Magnesium-Graphene Nanocomposite-Based Implants for Bone Repair. , 2020, ACS biomaterials science & engineering.

[24]  A. Karimipour,et al.  Atomic rheology analysis of the external magnetic field effects on nanofluid in non-ideal microchannel via molecular dynamic method , 2020, Journal of Thermal Analysis and Calorimetry.

[25]  D. Toghraie,et al.  The molecular dynamics simulation of thermal manner of Ar/Cu nanofluid flow: The effects of spherical barriers size , 2020 .

[26]  D. Toghraie,et al.  Molecular dynamics simulation of Water-Copper nanofluid flow in a three-dimensional nanochannel with different types of surface roughness geometry for energy economic management , 2020, Journal of Molecular Liquids.

[27]  A. Karimipour,et al.  Potential energy and atomic stability of H2O/CuO nanoparticles flow and heat transfer in non-ideal microchannel via molecular dynamic approach: the Green–Kubo method , 2020, Journal of Thermal Analysis and Calorimetry.

[28]  Q. Bach,et al.  Develop Molecular Dynamics Method to Simulate the Flow and Thermal Domains of H2O/Cu Nanofluid in a Nanochannel Affected by an External Electric Field , 2020, International Journal of Thermophysics.

[29]  O. Antonova,et al.  Insitu magnesium calcium phosphate cements formation: From one pot powders precursors synthesis to in vitro investigations , 2020, Bioactive materials.

[30]  L. Sluys,et al.  Experimental and numerical analysis on bending and tensile failure behavior of calcium phosphate cements. , 2020, Journal of the mechanical behavior of biomedical materials.

[31]  J. Pablo.,et al.  Dinámica del volteo de bloques en taludes rocosos , 2020 .

[32]  M. Afrand,et al.  Molecular dynamics simulation of Couette and Poiseuille Water-Copper nanofluid flows in rough and smooth nanochannels with different roughness configurations , 2019, Chemical Physics.

[33]  Davood Toghraie,et al.  Investigation of thermal properties of DNA structure with precise atomic arrangement via equilibrium and non-equilibrium molecular dynamics approaches , 2019, Comput. Methods Programs Biomed..

[34]  Hockin H. K. Xu,et al.  Toward dental caries: Exploring nanoparticle-based platforms and calcium phosphate compounds for dental restorative materials , 2018, Bioactive materials.

[35]  F. Witte,et al.  Biodegradable Metals , 2018, Biomaterials Science.

[36]  A. Abdollahi,et al.  Experimental investigation toward obtaining the effect of interfacial solid-liquid interaction and basefluid type on the thermal conductivity of CuO-loaded nanofluids , 2018, International Communications in Heat and Mass Transfer.

[37]  F. Moztarzadeh,et al.  Synthesis of Magnesium Doped Amorphous Calcium Phosphate as a Bioceramic for Biomedical Application: In Vitro Study , 2018, Silicon.

[38]  Louw Feenstra,et al.  Medical use of calcium phosphate ceramics , 2018 .

[39]  S. Hesaraki,et al.  Investigation of biocompatible nanosized materials for development of strong calcium phosphate bone cement: Comparison of nano-titania, nano-silicon carbide and amorphous nano-silica , 2014 .

[40]  C. Sfeir,et al.  Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation. , 2014, Acta biomaterialia.

[41]  Krishna P. Kommareddy,et al.  Reinforcing of a calcium phosphate cement with hydroxyapatite crystals of various morphologies. , 2010, ACS applied materials & interfaces.

[42]  Frank Witte,et al.  The history of biodegradable magnesium implants: a review. , 2010, Acta biomaterialia.

[43]  Alberto J Ambard,et al.  Calcium phosphate cement: review of mechanical and biological properties. , 2006, Journal of prosthodontics : official journal of the American College of Prosthodontists.

[44]  Alexis M Pietak,et al.  Magnesium and its alloys as orthopedic biomaterials: a review. , 2006, Biomaterials.

[45]  Murray S. Daw,et al.  The embedded-atom method: a review of theory and applications , 1993 .

[46]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[47]  W. C. Swope,et al.  A computer simulation method for the calculation of equilibrium constants for the formation of physi , 1981 .

[48]  W. Bonfield,et al.  Young's modulus of compact bone. , 1974, Journal of biomechanics.

[49]  M. Costache,et al.  Ceramics based on calcium phosphates substituted with magnesium ions for bone regeneration , 2019, International Journal of Applied Ceramic Technology.

[50]  Berend Denkena,et al.  Biodegradable magnesium implants for orthopedic applications , 2012, Journal of Materials Science.

[51]  E. Hairer,et al.  Acta Numerica 2003: Geometric numerical integration illustrated by the Störmer–Verlet method , 2003 .

[52]  W. R. Schram,et al.  Stimulation of healing in long bones by use of artificial material. , 1948, Journal of oral surgery.

[53]  F. H. Albee STUDIES IN BONE GROWTH: TRIPLE CALCIUM PHOSPHATE AS A STIMULUS TO OSTEOGENESIS. , 1920, Annals of surgery.