Modeling of adsorption isotherms of water vapor on Tunisian olive leaves using statistical mechanical formulation

Analytical expression for modeling water adsorption isotherms of food or agricultural products is developed using the statistical mechanics formalism. The model developed in this paper is further used to fit and interpret the isotherms of four varieties of Tunisian olive leaves called “Chemlali, Chemchali, Chetoui and Zarrazi”. The parameters involved in the model such as the number of adsorbed water molecules per site, n, the receptor sites density, NM, and the energetic parameters, a1 and a2, were determined by fitting the experimental adsorption isotherms at temperatures ranging from 303 to 323 K. We interpret the results of fitting. After that, the model is further applied to calculate thermodynamic functions which govern the adsorption mechanism such as entropy, the free enthalpy of Gibbs and the internal energy.

[1]  R. Duckworth SOLUTE MOBILITY IN RELATION TO WATER CONTENT AND WATER ACTIVITY , 1981 .

[2]  M. A. Abo-Zaid,et al.  Comparative antibacterial and antifungal effects of some phenolic compounds. , 1998, Microbios.

[3]  S. Bruin,et al.  Water activity and its estimation in food systems: theoretical aspects , 1978 .

[4]  S. Yanniotis,et al.  Model analysis of sorption isotherms. , 2009 .

[5]  A. Ben Lamine,et al.  Acid dye adsorption onto cationized polyamide fibres. Modeling and consequent interpretations of model parameter behaviours. , 2006, Journal of colloid and interface science.

[6]  J. H. de Boer,et al.  The dynamical character of adsorption , 1968 .

[7]  Mohamed Mathlouthi,et al.  Water vapour sorption isotherms and the caking of food powders , 2003 .

[8]  T. Labuza,et al.  Effect of Temperature on the Moisture Sorption Isotherms and Water Activity Shift of Two Dehydrated Foods , 2006 .

[9]  I. Langmuir THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM. , 1918 .

[10]  A. Ben Lamine,et al.  Application of statistical thermodynamics to the olfaction mechanism. , 1997, Chemical senses.

[11]  T. Labuza,et al.  Moisture transfer simulation in packaged cereal-fruit systems , 1996 .

[12]  A. B. Lamine,et al.  Modelling of water vapour adsorption on foods products by a statistical physics treatment using the grand canonical ensemble , 2012 .

[13]  Y. Henis,et al.  Studies on the mechanism of the antimicrobial action of oleuropein. , 1972, The Journal of applied bacteriology.

[14]  B. Nourhène,et al.  Sorptions isotherms and isosteric heats of sorption of olive leaves (Chemlali variety): Experimental and mathematical investigations , 2008 .

[15]  F. Kaymak-Ertekin,et al.  Sorption isotherms and isosteric heat of sorption for grapes, apricots, apples and potatoes , 2004 .

[16]  D. Guédon,et al.  Antioxidative activities of Olea europaea leaves and related phenolic compounds , 1992 .

[17]  Arun S. Mujumdar,et al.  Models for Sorption Isotherms for Foods: A Review , 2006 .

[18]  F. Visioli,et al.  Oleuropein protects low density lipoprotein from oxidation. , 1994, Life sciences.

[19]  S. Yanniotis,et al.  Modified classification of sorption isotherms , 2009 .

[20]  A. B. Lamine,et al.  On the statistical physics modeling of dye adsorption onto anionized nylon: Consequent new interpretations , 2012 .

[21]  Zacharias B. Maroulis,et al.  Application of the GAB model to the moisture sorption isotherms for dried fruits , 1988 .

[22]  N. Kechaou,et al.  Moisture desorption–adsorption isotherms and isosteric heats of sorption of Tunisian olive leaves (Olea europaea L.) , 2008 .

[23]  E. A. Guggenheim Applications of Statistical Mechanics , 1966 .

[24]  C. Klofutar,et al.  Water adsorption isotherms of some gellan gum samples , 2006 .

[25]  F. Zagrouba,et al.  Water sorption and dehydration kinetics of Tunisian rosemary leaves , 2005 .

[26]  Chris T. Kiranoudis,et al.  Equilibrium moisture content and heat of desorption of some vegetables , 1993 .

[27]  A. Al-Muhtaseb,et al.  Moisture sorption isotherm characteristics of food products: A review , 2002 .

[28]  C. R. Hyman,et al.  Moisture migration and control in multi-domain foods , 1998 .

[29]  G. Bellomo,et al.  Free radical-scavenging properties of olive oil polyphenols. , 1998, Biochemical and biophysical research communications.

[30]  E. Teller,et al.  On a Theory of the van der Waals Adsorption of Gases , 1940 .

[31]  A. Cadden Moisture Sorption Characteristics of Several Food Fibers , 1988 .

[32]  A. Ben Lamine,et al.  Modeling of the Psychophysical Response Curves Using the Grand Canonical Ensemble in Statistical Physics , 2007 .

[33]  A. L. Hines,et al.  Adsorption of water on cereal-bread type dietary fibers , 1993 .

[34]  Ala’a H. Al-Muhtaseb,et al.  Water sorption isotherms of starch powders: Part 1: mathematical description of experimental data , 2004 .

[35]  J. Chirife,et al.  Handbook of Food Isotherms: Water Sorption Parameters for Food and Food Components , 1982 .

[36]  Zhaolin Sun,et al.  Benzene Adsorption in Microporous Materials , 2005 .

[37]  C. Tassou,et al.  Inhibition of Salmonella enteritidis by oleuropein in broth and in a model food system , 1995, Letters in applied microbiology.

[38]  F. Aouaini,et al.  Statistical physics studies of multilayer adsorption isotherm in food materials and pore size distribution , 2015 .

[39]  P. Vírseda,et al.  Moisture desorption isotherms of rough rice at high temperatures , 2007 .

[40]  R. Marathe Investigating entropy changes during gas adsorption in ETS-4. , 2005, Journal of colloid and interface science.

[41]  A. B. Lamine,et al.  Statistical Physics Modelling of Dye Adsorption on Modified Cotton , 2002 .

[42]  A. B. Lamine,et al.  New theoretical expressions for the five adsorption type isotherms classified by BET based on statistical physics treatment , 2003 .