The covering radius of doubled 2-designs in 2Ok

Abstract The following problem originated from interconnection network considerations: what is the graphical covering radius of a doubled 2-design in the antipodal double cover of the odd graph 2Ok? In particular, when k is even, we take this design to be a Hadamard design. We obtain upper and lower bounds on this parameter for large values of k. The upper bound is obtained by generalizing the concept of q-covering in Johnson graphs to the graphs 2Ok. We use probabilistic arguments analogous to the Norse bounds of coding theory.

[1]  Jean-Claude Bermond,et al.  Large fault-tolerant interconnection networks , 1989, Graphs Comb..

[2]  M. Watkins Connectivity of transitive graphs , 1970 .

[3]  Larry D. Wittie,et al.  Communication Structures for Large Networks of Microcomputers , 1981, IEEE Transactions on Computers.

[4]  Tor Helleseth,et al.  On the covering radius of binary codes (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[5]  Arif Ghafoor,et al.  Distance-Transitive Graphs for Fault-Tolerant Multiprocessor Systems , 1989, ICPP.

[6]  Sheldon B. Akers,et al.  On the Construction of (d, k) Graphs , 1965, IEEE Trans. Electron. Comput..

[7]  E. Bannai,et al.  Algebraic Combinatorics I: Association Schemes , 1984 .

[8]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[9]  Gérard D. Cohen,et al.  Covering radius - Survey and recent results , 1985, IEEE Trans. Inf. Theory.

[10]  Arif Ghafoor,et al.  A Study of Odd Graphs as Fault-Tolerant Interconnection Networks , 1991, IEEE Trans. Computers.

[11]  Hanfried Lenz,et al.  Design theory , 1985 .

[12]  Norman Biggs,et al.  DESIGNS, FACTORS AND CODES IN GRAPHS , 1975 .

[13]  B W Arden,et al.  Analysis of Chordal Ring Network , 1981, IEEE Transactions on Computers.

[14]  Claude Berge,et al.  Graphs and Hypergraphs , 2021, Clustering.

[15]  N. Biggs SOME ODD GRAPH THEORY , 1979 .

[16]  Jean-Claude Bermond,et al.  Surveys in Combinatorics: GRAPHS AND INTERCONNECTION NETWORKS: DIAMETER AND VULNERABILITY , 1983 .

[17]  James R. Armstrong,et al.  Fault Diagnosis in a Boolean n Cube Array of Microprocessors , 1981, IEEE Transactions on Computers.

[18]  Haim Hanani,et al.  On Some Tactical Configurations , 1963, Canadian Journal of Mathematics.